Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Anal Biochem ; 693: 115585, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851475

ABSTRACT

Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography-mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples. New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.

2.
J Proteome Res ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123456

ABSTRACT

Adeno-associated viruses (AAVs) are commonly used as vectors for the delivery of gene therapy targets. Characterization of AAV capsid proteins (VPs) and their post-translational modifications (PTMs) have become a critical attribute monitored to evaluate product quality. Liquid chromatography-mass spectrometry (LC-MS) analysis of intact AAV VPs provides both quick and reliable serotype identification as well as proteoform information on each VP. Incorporating these analytical strategies into rapid good manufacturing practice (GMP)-compliant workflows containing robust, but simplified, data processing methods is necessary to ensure effective product quality control (QC) during production. Here, we present a GMP-compliant LC-MS workflow for the rapid identification and in-depth characterization of AAVs. Hydrophilic interaction liquid chromatography (HILIC) MS with difluoroacetic acid as a mobile phase modifier is utilized to achieve the intact separation and identification of AAV VPs and their potential proteoforms. Peptide mapping is performed to confirm PTMs identified during intact VP analysis and for in-depth PTM characterization. The intact separations platform is then incorporated into a data processing workflow developed using GMP-compliant software capable of rapid AAV serotype identification and, if desired, specific serotype PTM monitoring and characterization. Such a platform provides product QC capabilities that are easily accessible in a regulatory setting.

3.
Curr Protoc ; 3(11): e927, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37929772

ABSTRACT

The multi-attribute method (MAM) has emerged significantly in recent years to support biotherapeutic protein characterization from process development to the QC environment. MAM is a liquid chromatography mass spectrometry (LC-MS) based peptide mapping approach, which combines the benefits from liquid chromatography coupled to high resolution accurate mass mass spectrometry (LC-HRAM MS), enabling direct assessment of protein sequence and product quality attributes with site specificity. These product quality attributes may impact efficacy, safety, stability, and process robustness. MAM is intended to replace conventional analytical approaches as it offers a more streamlined strategy for parallel monitoring of multiple attributes in a single analysis with high sensitivity and confidence, and ultimately supports more robust Quality by Design (QbD) approaches and faster decision cycles for biotherapeutic development. MAM consists of three main stages. The first stage is sample digestion, which typically entails proteolytic digestion of the protein. The second stage is reversed-phase chromatographic separation of the generated peptides and detection by HRAM MS in two phases. During MAM Phase I (discovery phase), data-dependent acquisition (DDA) MS/MS is performed to enable confident identification of peaks and development of a peptide workbook. During MAM Phase II (monitoring phase), full MS acquisition is only carried out for the monitoring of predefined product quality attributes (PQAs). The third stage is data processing, which entails analysis and reporting for each of the two phases including evaluation of sequence coverage, assessment of PQAs and peptide workbook creation during phase I, and targeted monitoring of predefined product attributes and new peak detection (NPD) during phase II. The latter is a comparative analysis that uses a base peak alignment algorithm to determine any non-monitored differences between the LC-MS chromatograms of a test sample and a reference standard. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: In-solution sample digestion Alternate Protocol: Automated sample digestion Basic Protocol 2: Reversed-phase chromatographic separation and detection by HRAM-MS (RPLC-HRAM MS) Basic Protocol 3: Data processing and reporting.


Subject(s)
Antibodies, Monoclonal , Tandem Mass Spectrometry , Workflow , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Chromatography, Liquid/methods , Peptides
4.
Crit Rev Anal Chem ; : 1-18, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37490277

ABSTRACT

The rapid growth of biotherapeutic industry, with more and more complex molecules entering the market, forces the need for advanced analytical platforms that can quickly and accurately identify and quantify product quality attributes. Mass spectrometry has the potential to provide more detailed information about the quality attributes of complex products, and MS methods are more sensitive than UV methods for detection of impurities. The multi-attribute method (MAM), a liquid chromatography-mass spectrometry based analytical approach is an emerging platform which supports biotherapeutic characterization and cGMP testing. The main advantage lies in the ability to monitor multiple quality attributes in a single assay, both at the peptide and the intact level, facilitating streamlined biopharmaceutical production, from research and development to the QC environment. This review highlights the current landscape of the MAM approach with special attention given to increased analytical throughput, general requirements for QC in terms of instrumentation and software, regulatory requirements, and industry acceptance of the MAM platform.

5.
J Pharm Biomed Anal ; 234: 115534, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37343453

ABSTRACT

Biosimilarity assessment requires extensive characterization and comparability exercises to investigate product quality attributes of an originator product and its potential biosimilar(s) and to highlight any differences between them. Performing a thorough comparison allows a shortened approval path, which also eliminates lengthy and expensive clinical trials, ensuring comparable product quality and efficacy but at lower drug prices. The wide variety of analytical methods available for biosimilar assessment ranges from biological to analytical assays, each providing orthogonal information to fully characterize biosimilar candidates. Intact native mass spectrometry (MS) has been shown to be an excellent tool for detection and monitoring of important quality attributes such as N-glycosylation, deamidation, sequence truncation and higher order structures. When combined with efficient upfront separation methods, simplification of the proteoform heterogeneity and associated complexity prior to MS analysis can be achieved. Native mass spectrometry can provide robust and accurate results within short analysis times and requires minimal sample preparation. In this study we report the use of a monodisperse strong cation exchange chromatography phase hyphenated with Orbitrap mass spectrometry (SCX-MS) to compare the best-selling biopharmaceutical product Humira® with 7 commercially approved biosimilar products. SCX-MS analysis allowed for the identification of previously described as well as so far unreported proteoforms and their relative quantitation across all samples, revealing differences in N-glycosylation and lysine truncation, as well as unique features for some products such as sialylation and N-terminal clipping. SCX-MS analysis, powered by a highly efficient separation column, enabled deep and efficient analytical comparison of biosimilar products.


Subject(s)
Biosimilar Pharmaceuticals , Biosimilar Pharmaceuticals/chemistry , Adalimumab/chemistry , Mass Spectrometry/methods , Chromatography , Glycosylation
6.
J Pharm Biomed Anal ; 234: 115494, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37300951

ABSTRACT

The IgG2 type monoclonal antibody panitumumab is an anti-epidermal growth factor receptor (EGFR) drug used for the treatment of EGFR-expressing, chemotherapy resistant, metastatic colorectal carcinoma. In this study, panitumumab drug product was first analysed using size exclusion chromatography coupled to mass spectrometry for rapid identity testing. The experimental data led to the identification of two panitumumab isoforms with several prominent forms remaining unidentified, despite apparently low sample complexity. Microchip capillary electrophoresis-mass spectrometry (CE-MS) was subsequently utilised for a more detailed characterization. It was observed that panitumumab is subject to partial N-terminal pyroglutamate formation. Incomplete conversion is uncharacteristic for N-terminally exposed glutamines and in case of panitumumab gives rise to forms which show successive mass offsets of 17 Da, respectively. If not separated before mass spectrometric analysis, e.g. by capillary electrophoresis, such near isobaric species coalesce into single MS peaks, which subsequently hampers or prevents their assignment. With a total of 42 panitumumab isoforms assigned by CE-MS, these observations highlight a potential pitfall of commonly applied rapid identity testing workflows and demonstrate that even low complexity biopharmaceuticals can require separation strategies which offer high separation selectivity for species close in mass.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Monoclonal/chemistry , Panitumumab , Mass Spectrometry/methods , Electrophoresis, Capillary/methods , ErbB Receptors
7.
J Pharm Biomed Anal ; 234: 115543, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37385093

ABSTRACT

Adalimumab drug product (Humira ®), the first fully human monoclonal antibody (mAb) approved by FDA in 2002, led the top ten list of best-selling mAbs in 2018 and has been the most profitable drug in the world. With the expiration of patent protection in Europe in 2018 and in United States by 2023, the landscape is changing as up to 10 adalimumab biosimilars are expected to enter the market in the US. Biosimilars offer the potential to lower costs on health care systems and increase patient accessibility. The analytical similarity of seven different adalimumab biosimilars was accomplished in the present study using the multi-attribute method (MAM), a LC-MS based peptide mapping technique that allows for primary sequence assessment and evaluation of multiple quality attributes including deamidation, oxidation, succinimide formation, N- and C- terminal composition and detailed N-glycosylation analysis. In the first step, characterization of the most relevant post-translational modifications of a reference product was attained during the discovery phase of MAM. During the second step, as part of the MAM targeted monitoring phase, adalimumab batch-to batch variability was evaluated to define statistical intervals for the establishment of similarity ranges. The third step describes biosimilarity evaluation of predefined quality attributes and new peak detection for the assessment of any new or modified peak compared to the reference product. This study highlights a new perspective of the MAM approach and its underlying power for biotherapeutic comparability exercises in addition to analytical characterization. MAM offers a streamlined comparability assessment workflow based on high-confidence quality attribute analysis using high-resolution accurate mass mass spectrometry (HRAM MS) and the capability to detect any new or modified peak compared to the reference product.


Subject(s)
Biosimilar Pharmaceuticals , Humans , Adalimumab/chemistry , Biosimilar Pharmaceuticals/chemistry , Antibodies, Monoclonal/chemistry , Mass Spectrometry , Glycosylation
8.
Nat Protoc ; 18(4): 1056-1089, 2023 04.
Article in English | MEDLINE | ID: mdl-36526726

ABSTRACT

The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry (LC-MS)-based method that is used to directly characterize and monitor numerous product quality attributes (PQAs) at the amino acid level of a biopharmaceutical product. MAM enables identity testing based on primary sequence verification, detection and quantitation of post-translational modifications and impurities. This ability to simultaneously and directly determine PQAs of therapeutic proteins makes MAM a more informative, streamlined and productive workflow than conventional chromatographic and electrophoretic assays. MAM relies on proteolytic digestion of the sample followed by reversed-phase chromatographic separation and high-resolution LC-MS analysis in two phases. First, a discovery study to determine quality attributes for monitoring is followed by the creation of a targeted library based on high-resolution retention time plus accurate mass analysis. The second aspect of MAM is the monitoring phase based on the target peptide library and new peak detection using differential analysis of the data to determine the presence, absence or change of any species that might affect the activity or stability of the biotherapeutic. The sample preparation process takes between 90 and 120 min, whereas the time spent on instrumental and data analyses might vary from one to several days for different sample sizes, depending on the complexity of the molecule, the number of attributes to be monitored and the information to be detailed in the final report. MAM is developed to be used throughout the product life cycle, from process development through upstream and downstream processes to quality control release or under current good manufacturing practices regulations enforced by regulatory agencies.


Subject(s)
Antibodies, Monoclonal , Protein Processing, Post-Translational , Workflow , Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Mass Spectrometry/methods
9.
Article in English | MEDLINE | ID: mdl-35240429

ABSTRACT

A well-defined and controlled glycosylation pattern is important to maintain quality and safety of therapeutic proteins. Glycosylation is strongly dependent on the host cell line used for recombinant protein expression. Cetuximab, which is produced in mouse myeloma cells has been shown to harbour Fab glycans, which contain non-human like features and hence, can potentially cause an immunogenic response in patients. In light of the advent of biosimilar and biobetter development, we produced cetuximab variants in human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. A combination of orthogonal chromatographic modes such as hydrophilic interaction, size exclusion and strong cation exchange chromatography with various detection strategies was employed to characterise the three different cetuximab variants and to compare the in-house produced HEK and CHO variants with the reference drug product. While Fc galactosylation and sialic acid content of the drug product and the HEK variant were highly similar, the CHO product showed lower galactosylation on Fc glycans and a comparatively low sialic acid content in the Fab region. The elevated high-mannose content of CHO cetuximab also suggests potential rapid clearence from circulation. The combination of multiple chromatographic separation modes has proven powerful for the characterisation of expression system dependent protein quality attributes such as N-glycosylation.


Subject(s)
Cetuximab/genetics , Cetuximab/metabolism , Polysaccharides/metabolism , Animals , CHO Cells , Cell Line/microbiology , Cetuximab/chemistry , Chromatography , Cricetinae , Cricetulus , Gene Expression , Glycosylation , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Mice , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Polysaccharides/chemistry , Protein Processing, Post-Translational
10.
J Pharm Biomed Anal ; 207: 114427, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34757284

ABSTRACT

Adeno-associated virus (AAV) represent a widely used delivery mechanism for gene therapy treatments currently being developed. The size and complexity of these molecules requires the development of sensitive analytical methods for detailed product characterization. Among the quality attributes that need to be monitored, characterization of the AAV capsid protein amino acid sequences and any associated post translational modifications (PTM) present, should be performed. As commonly used for recombinant protein analysis, LC-MS based peptide mapping can provide sequence coverage and PTM information to improve product understanding and the development and deployment of the associated manufacturing processes. In the current study, we report a fast and efficient method to digest AAV5 capsid proteins in only 30 min prior to peptide mapping analysis. The performance of different proteases in digesting AAV5 was compared and the benefits of using nanoflow liquid chromatography for separation prior to high resolution mass spectrometry to obtain 100% sequence coverage are highlighted. Characterization and quantitation of PTMs on AAV5 capsid proteins when using pepsin as a single protease is reported, thereby demonstrating the potential of this method to aid with complete characterization of AAV serotypes in gene therapy development laboratories.


Subject(s)
Capsid Proteins , Dependovirus , Capsid Proteins/genetics , Capsid Proteins/metabolism , Chromatography, Liquid , Dependovirus/genetics , Dependovirus/metabolism , Digestion , Peptide Mapping , Protein Processing, Post-Translational , Tandem Mass Spectrometry
11.
Analyst ; 146(21): 6547-6555, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34585175

ABSTRACT

Disulfide bond reduction within antibody mass spectrometry workflows is typically carried out using chemical reducing agents to produce antibody subunits for middle-down and middle-up analysis. In this contribution we offer an online electrochemical reduction method for the reduction of antibodies coupled with liquid chromatography (LC) and mass spectrometry (MS), reducing the disulfide bonds present in the antibody without the need for chemical reducing agents. An electrochemical cell placed before the analytical column and mass spectrometer facilitated complete reduction of NISTmAb inter- and intrachain disulfide bonds. Reduction and analysis were carried out under optimal solvent conditions using a trapping column and switching valve to facilitate solvent exchange during analysis. The level of reduction was shown to be affected by electrochemical potential, temperature and solvent organic content, but with optimization, complete disulfide bond cleavage was achieved. The use of an inline electrochemical cell offers a simple, rapid, workflow solution for liquid chromatography mass spectrometry analysis of antibody subunits.


Subject(s)
Disulfides , Electrochemical Techniques , Chromatography, Liquid , Mass Spectrometry , Workflow
12.
Anal Chim Acta ; 1179: 338840, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34535264

ABSTRACT

Glycosylation is a prominent co- and post-translational modification which contributes to a variety of important biological functions. Protein glycosylation characteristics, particularly N-glycosylation, are influenced by changes in one's pathological state, such as through the presence of disease, and as such, there is great interest in N-glycans as potential disease biomarkers. Human serum is an attractive source for N-glycan based biomarker studies as circulatory proteins are representative of one's physiology, with many serum proteins containing N-glycosylation. The difficulty in comprehensively characterizing the serum N-glycome arises from the absence of a biosynthetic template resulting in great structural heterogeneity and complexity. To help overcome these challenges we developed a 2-dimensional liquid chromatography platform which utilizes offline weak anion exchange (WAX) chromatography in the first dimension and hydrophilic interaction liquid chromatography (HILIC) in the second dimension to separate N-glycans by charge, corresponding to degree of sialylation, and size, respectively. Performing these separations offline enables subsequent derivatization with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) for sialic acid linkage determination and the identification of sialic acid linkage isomers. Subsequent tandem mass spectrometry analysis revealed the identification of 212 complete and partial N-glycan structures including low abundant N-glycans containing acetyl and sulphate modifications. The identifications obtained through this platform were then applied to N-glycans released from a set of stage 3 gastric cancer serum samples obtained from patients before (pre-op) and after (post-op) tumour resection to investigate how the serum N-glycome can facilitate differentiation between the two pathological states.


Subject(s)
Morpholines , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans
13.
J Am Soc Mass Spectrom ; 32(8): 1998-2012, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-33513021

ABSTRACT

The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry based method that is used to directly characterize and monitor many product quality attributes and impurities on biotherapeutics, most commonly at the peptide level. It utilizes high-resolution accurate mass spectral data which are analyzed in an automated fashion. MAM is a promising approach that is intended to replace or supplement several conventional assays with a single LC-MS analysis and can be implemented in a Current Good Manufacturing Practice environment. MAM provides accurate site-specific quantitation information on targeted attributes and the nontargeted new peak detection function allows to detect new peaks as impurities, modifications, or sequence variants when comparing to a reference sample. The high resolution MAM workflow was applied here for three independent case studies. First, to monitor the behavior of monoclonal antibody product quality attributes over the course of a 12-day cell culture experiment providing an insight into the behavior and dynamics of product attributes throughout the process. Second, the workflow was applied to test the purity and identity of a product through analysis of samples spiked with host cell proteins. Third, through the comparison of a drug product and a biosimilar with known sequence variants. The three case studies presented here, clearly demonstrate the robustness and accuracy of the MAM workflow that implies suitability for deployment in the regulated environment.


Subject(s)
Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Mass Spectrometry/methods , Animals , Antibodies, Monoclonal/analysis , Batch Cell Culture Techniques/methods , Biosimilar Pharmaceuticals/analysis , Biosimilar Pharmaceuticals/chemistry , CHO Cells , Cathepsin L/analysis , Cathepsin L/chemistry , Cathepsin L/genetics , Cricetulus , Drug Contamination , Glycosylation , Immunoglobulin G/analysis , Immunoglobulin G/genetics , Lipoprotein Lipase/analysis , Lipoprotein Lipase/chemistry , Lipoprotein Lipase/genetics , Lysine/chemistry , Quality Control , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Succinimides/chemistry , Trypsin/chemistry , Workflow
14.
Eur J Pharm Biopharm ; 158: 83-95, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33212184

ABSTRACT

The biopharmaceutical industry continues to develop mAb-based biotherapeutics in increasing numbers. Due to their complexity, there are several critical quality attributes (CQAs) that need to be measured and controlled to guarantee product safety and efficacy. Charge variant analysis is a widely used method to monitor changes in product quality during the manufacturing process of monoclonal antibodies (mAbs) and, together with a bottom-up peptide centred approach, acts as a key analytical platform to fulfil regulatory requirements. Native MS measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact proteins such as mAbs. The resulting native mass spectrum of a mAb is characterized by a narrower charge-state envelope that simplifies the spectra and also condenses the ion signals into fewer peaks, increasing the signal-to-noise ratio. Algorithmic spectral deconvolution is needed for routine accurate and rapid molecular weight determination, and consequently, multiple deconvolution algorithms have evolved over the past decade. Here, we demonstrate the utility of the sliding window algorithm as a robust and powerful deconvolution tool for comprehensive characterisation of charge variant analysis data for mAbs. Optimum performance is evaluated by studying the impact of critical software parameters on detection, identification and relative quantitation of protein isoforms. By combining molecular mass and retention time information, it was possible to identify multiple modifications on adalimumab and trastuzumab, both IgG1 mAbs, including lysine truncation, deamidation and succinimide formation, along with the N-glycan distribution of each of the identified charge variants. Sliding window deconvolution also provides a key benefit of low abundant variant detection in a single analysis and the ability to detect co-eluting components with different relative abundances. The studied mAbs demonstrate the algoritms applicability for efficient data processing of both simple and complex mAbs analysed using pH gradient cation exchange chromatography coupled to native mass spectrometry.


Subject(s)
Adalimumab/analysis , Quality Control , Trastuzumab/analysis , Adalimumab/chemistry , Cation Exchange Resins/chemistry , Chromatography, Ion Exchange/methods , Chromatography, Ion Exchange/standards , Hydrogen-Ion Concentration , Mass Spectrometry/methods , Mass Spectrometry/standards , Software , Trastuzumab/chemistry
15.
Anal Bioanal Chem ; 412(25): 6833-6848, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32710279

ABSTRACT

Peptide mapping analysis is a regulatory expectation to verify the primary structure of a recombinant product sequence and to monitor post-translational modifications (PTMs). Although proteolytic digestion has been used for decades, it remains a labour-intensive procedure that can be challenging to accurately reproduce. Here, we describe a fast and reproducible protocol for protease digestion that is automated using immobilised trypsin on magnetic beads, which has been incorporated into an optimised peptide mapping workflow to show method transferability across laboratories. The complete workflow has the potential for use within a multi-attribute method (MAM) approach in drug development, production and QC laboratories. The sample preparation workflow is simple, ideally suited to inexperienced operators and has been extensively studied to show global applicability and robustness for mAbs by performing sample digestion and LC-MS analysis at four independent sites in Europe. LC-MS/MS along with database searching was used to characterise the protein and determine relevant product quality attributes (PQAs) for further testing. A list of relevant critical quality attributes (CQAs) was then established by creating a peptide workbook containing the specific mass-to-charge (m/z) ratios of the modified and unmodified peptides of the selected CQAs, to be monitored in a subsequent test using LC-MS analysis. Data is provided that shows robust digestion efficiency and low levels of protocol induced PTMs. Graphical abstract.


Subject(s)
Antibodies, Monoclonal/chemistry , Peptide Mapping/methods , Trypsin/chemistry , Antibodies, Monoclonal/immunology , Automation , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods
16.
J Pharm Anal ; 10(1): 23-34, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32123597

ABSTRACT

With the size of the biopharmaceutical market exponentially increasing, there is an aligned growth in the importance of data-rich analyses, not only to assess drug product safety but also to assist drug development driven by the deeper understanding of structure/function relationships. In monoclonal antibodies, many functions are regulated by N-glycans present in the constant region of the heavy chains and their mechanisms of action are not completely known. The importance of their function focuses analytical research efforts on the development of robust, accurate and fast methods to support drug development and quality control. Released N-glycan analysis is considered as the gold standard for glycosylation characterisation; however, it is not the only method for quantitative analysis of glycoform heterogeneity. In this study, ten different analytical workflows for N-glycan analysis were compared using four monoclonal antibodies. While observing good comparability between the quantitative results generated, it was possible to appreciate the advantages and disadvantages of each technique and to summarise all the observations to guide the choice of the most appropriate analytical workflow according to application and the desired depth of data generated.

17.
J Proteome Res ; 17(3): 1269-1277, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29441788

ABSTRACT

Afamin is an 87 kDa glycoprotein with five predicted N-glycosylation sites. Afamin's glycan abundance contributes to conformational and chemical inhomogeneity presenting great challenges for molecular structure determination. For the purpose of studying the structure of afamin, various forms of recombinantly expressed human afamin (rhAFM) with different glycosylation patterns were thus created. Wild-type rhAFM and various hypoglycosylated forms were expressed in CHO, CHO-Lec1, and HEK293T cells. Fully nonglycosylated rhAFM was obtained by transfection of point-mutated cDNA to delete all N-glycosylation sites of afamin. Wild-type and hypo/nonglycosylated rhAFM were purified from cell culture supernatants by immobilized metal ion affinity and size exclusion chromatography. Glycan analysis of purified proteins demonstrated differences in micro- and macro-heterogeneity of glycosylation enabling the comparison between hypoglycosylated, wild-type rhAFM, and native plasma afamin. Because antibody fragments can work as artificial chaperones by stabilizing the structure of proteins and consequently enhance the chance for successful crystallization, we incubated a Fab fragment of the monoclonal anti-afamin antibody N14 with human afamin and obtained a stoichiometric complex. Subsequent results showed sufficient expression of various partially or nonglycosylated forms of rhAFM in HEK293T and CHO cells and revealed that glycosylation is not necessary for expression and secretion.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Carrier Proteins/chemistry , Glycoproteins/chemistry , Immunoglobulin Fab Fragments/chemistry , Protein Processing, Post-Translational , Serum Albumin, Human/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal/metabolism , Antigen-Antibody Complex/metabolism , CHO Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Cricetulus , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serum Albumin, Human/genetics , Serum Albumin, Human/metabolism
18.
Methods Mol Biol ; 1606: 353-366, 2017.
Article in English | MEDLINE | ID: mdl-28502012

ABSTRACT

Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.


Subject(s)
Chromatography, Liquid/methods , Electrophoresis, Capillary/methods , Mass Spectrometry/methods , Polysaccharides/analysis , Polysaccharides/isolation & purification , Aniline Compounds/chemistry , Animals , Humans , Isotope Labeling/methods , Isotopes/chemistry , Polysaccharides/chemistry , ortho-Aminobenzoates/chemistry
19.
J Proteome Res ; 16(2): 748-762, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27936757

ABSTRACT

The pathological progression from benign monoclonal gammopathy of undetermined significance (MGUS) to smoldering myeloma (SMM) and finally to active myeloma (MM) is poorly understood. Abnormal immunoglobulin G (IgG) glycosylation in myeloma has been reported. Using a glycomic platform composed of hydrophilic interaction UPLC, exoglycosidase digestions, weak anion-exchange chromatography, and mass spectrometry, polyclonal IgG N-glycosylation profiles from 35 patients [MGUS (n = 8), SMM (n = 5), MM (n = 8), complete-response (CR) post-treatment (n = 5), relapse (n = 4), healthy age-matched control (n = 5)] were characterized to map glycan structures in distinct disease phases of multiple myeloma. N-Glycan profiles from MGUS resembled normal control. The abundance of neutral glycans containing terminal galactose was highest in SMM, while agalactosylated glycans and fucosylated glycans were lowest in MM. Three afucosyl-biantennary-digalactosylated-sialylated species (A2G2S1, A2BG2S1, and A2BG2S2) decreased 2.38-, 2.4-, and 4.25-fold, respectively, from benign to active myeloma. Increased light chain sialylation was observed in a longitudinal case of transformation from MGUS to MM. Bisecting N-acetylglucosamine was lowest in the CR group, while highest in relapsed disease. Gene expression levels of FUT 8, ST6GAL1, B4GALT1, RECK, and BACH2 identified from publicly available GEP data supported the glycomic changes seen in MM compared to control. The observed differential glycosylation underlined the heterogeneity of the myeloma spectrum. This study demonstrates the feasibility of mapping glycan modifications on the IgG molecule and provides proof of principle that differential IgG glycosylation patterns can be successfully identified in plasma cell disorders.


Subject(s)
Immunoglobulin G/blood , Multiple Myeloma/blood , Neoplasm Recurrence, Local/blood , Aged , Female , Glycosylation , Humans , Male , Middle Aged , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/pathology , Polysaccharides/blood
20.
Methods ; 116: 63-83, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27832969

ABSTRACT

This study was performed to monitor the glycoform distribution of a recombinant antibody fusion protein expressed in CHO cells over the course of fed-batch bioreactor runs using high-throughput methods to accurately determine the glycosylation status of the cell culture and its product. Three different bioreactors running similar conditions were analysed at the same five time-points using the advanced methods described here. N-glycans from cell and secreted glycoproteins from CHO cells were analysed by HILIC-UPLC and MS, and the total glycosylation (both N- and O-linked glycans) secreted from the CHO cells were analysed by lectin microarrays. Cell glycoproteins contained mostly high mannose type N-linked glycans with some complex glycans; sialic acid was α-(2,3)-linked, galactose ß-(1,4)-linked, with core fucose. Glycans attached to secreted glycoproteins were mostly complex with sialic acid α-(2,3)-linked, galactose ß-(1,4)-linked, with mostly core fucose. There were no significant differences noted among the bioreactors in either the cell pellets or supernatants using the HILIC-UPLC method and only minor differences at the early time-points of days 1 and 3 by the lectin microarray method. In comparing different time-points, significant decreases in sialylation and branching with time were observed for glycans attached to both cell and secreted glycoproteins. Additionally, there was a significant decrease over time in high mannose type N-glycans from the cell glycoproteins. A combination of the complementary methods HILIC-UPLC and lectin microarrays could provide a powerful and rapid HTP profiling tool capable of yielding qualitative and quantitative data for a defined biopharmaceutical process, which would allow valuable near 'real-time' monitoring of the biopharmaceutical product.


Subject(s)
Antibodies/genetics , Lectins/chemistry , Polysaccharides/chemistry , Protein Array Analysis/instrumentation , Recombinant Fusion Proteins/genetics , Sialic Acids/chemistry , Animals , Antibodies/chemistry , Batch Cell Culture Techniques , Bioreactors , CHO Cells , Carbohydrate Sequence , Chromatography, High Pressure Liquid/methods , Cricetulus , Glycosylation , Hydrophobic and Hydrophilic Interactions , Lectins/isolation & purification , Polysaccharides/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sialic Acids/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...