Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 600(11): 2789-2811, 2022 06.
Article in English | MEDLINE | ID: mdl-35385139

ABSTRACT

A brainstem homeostatic system senses CO2 /H+ to regulate ventilation, blood gases and acid-base balance. Neurons of the retrotrapezoid nucleus (RTN) and medullary raphe are both implicated in this mechanism as respiratory chemosensors, but recent pharmacological work suggested that the CO2 /H+ sensitivity of RTN neurons is mediated indirectly, by raphe-derived serotonin acting on 5-HT7 receptors. To investigate this further, we characterized Htr7 transcript expression in phenotypically identified RTN neurons using multiplex single cell qRT-PCR and RNAscope. Although present in multiple neurons in the parafacial region of the ventrolateral medulla, Htr7 expression was undetectable in most RTN neurons (Nmb+ /Phox2b+ ) concentrated in the densely packed cell group ventrolateral to the facial nucleus. Where detected, Htr7 expression was modest and often associated with RTN neurons that extend dorsolaterally to partially encircle the facial nucleus. These dorsolateral Nmb+ /Htr7+ neurons tended to express Nmb at high levels and the intrinsic RTN proton detectors Gpr4 and Kcnk5 at low levels. In mouse brainstem slices, CO2 -stimulated firing in RTN neurons was mostly unaffected by a 5-HT7 receptor antagonist, SB269970 (n = 11/13). At the whole animal level, microinjection of SB269970 into the RTN of conscious mice blocked respiratory stimulation by co-injected LP-44, a 5-HT7 receptor agonist, but had no effect on CO2 -stimulated breathing in those same mice. We conclude that Htr7 is expressed by a minor subset of RTN neurons with a molecular profile distinct from the established chemoreceptors and that 5-HT7 receptors have negligible effects on CO2 -evoked firing activity in RTN neurons or on CO2 -stimulated breathing in mice. KEY POINTS: Neurons of the retrotrapezoid nucleus (RTN) are intrinsic CO2 /H+ chemosensors and serve as an integrative excitatory hub for control of breathing. Serotonin can activate RTN neurons, in part via 5-HT7 receptors, and those effects have been implicated in conferring an indirect CO2  sensitivity. Multiple single cell molecular approaches revealed low levels of 5-HT7 receptor transcript expression restricted to a limited population of RTN neurons. Pharmacological experiments showed that 5-HT7 receptors in RTN are not required for CO2 /H+ -stimulation of RTN neuronal activity or CO2 -stimulated breathing. These data do not support a role for 5-HT7 receptors in respiratory chemosensitivity mediated by RTN neurons.


Subject(s)
Carbon Dioxide , Serotonin , Animals , Carbon Dioxide/metabolism , Chemoreceptor Cells/physiology , Mice , Receptors, Serotonin , Respiration , Serotonin/metabolism
2.
Front Neural Circuits ; 16: 1033756, 2022.
Article in English | MEDLINE | ID: mdl-36605420

ABSTRACT

Epilepsy is an umbrella term used to define a wide variety of seizure disorders and sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in epilepsy. Although some SUDEP risk factors have been identified, it remains largely unpredictable, and underlying mechanisms remain poorly understood. Most seizures start in the cortex, but the high mortality rate associated with certain types of epilepsy indicates brainstem involvement. Therefore, to help understand SUDEP we discuss mechanisms by which seizure activity propagates to the brainstem. Specifically, we highlight clinical and pre-clinical evidence suggesting how seizure activation of: (i) descending inhibitory drive or (ii) spreading depolarization might contribute to brainstem dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder, we also considered factors expected to favor or oppose mechanisms of seizure propagation. We also consider whether epilepsy-associated genetic variants directly impact brainstem function. Because respiratory failure is a leading cause of SUDEP, our discussion of brainstem dysfunction focuses on respiratory control.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Death, Sudden/etiology , Epilepsy/complications , Brain Stem , Seizures
3.
J Neurophysiol ; 126(4): 1310-1313, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34495776

ABSTRACT

Rett syndrome (RTT) is a neurodevelopmental disorder characterized a spectrum of phenotypes affecting neuronal and glial populations. Recent work by Dong et al. (Dong Q, Kim J, Nguyen L, Bu Q, Chang Q. J Neurosci 40: 6250-6261, 2020) suggests that augmented GABA uptake by astrocytes diminishes tonic inhibition in the hippocampus and contributes to increased seizure propensity in RTT. Here, I will review evidence supporting this possibility and critically evaluate how increased expression of a GABA transporter might contribute to this mechanism.


Subject(s)
Astrocytes , Rett Syndrome , Astrocytes/metabolism , GABA Plasma Membrane Transport Proteins , Humans , Methyl-CpG-Binding Protein 2/metabolism , Pyramidal Cells/metabolism , gamma-Aminobutyric Acid
4.
Elife ; 102021 05 20.
Article in English | MEDLINE | ID: mdl-34013884

ABSTRACT

Glutamatergic neurons in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors by regulating breathing in response to tissue CO2/H+. The RTN and greater parafacial region may also function as a chemosensing network composed of CO2/H+-sensitive excitatory and inhibitory synaptic interactions. In the context of disease, we showed that loss of inhibitory neural activity in a mouse model of Dravet syndrome disinhibited RTN chemoreceptors and destabilized breathing (Kuo et al., 2019). Despite this, contributions of parafacial inhibitory neurons to control of breathing are unknown, and synaptic properties of RTN neurons have not been characterized. Here, we show the parafacial region contains a limited diversity of inhibitory neurons including somatostatin (Sst)-, parvalbumin (Pvalb)-, and cholecystokinin (Cck)-expressing neurons. Of these, Sst-expressing interneurons appear uniquely inhibited by CO2/H+. We also show RTN chemoreceptors receive inhibitory input that is withdrawn in a CO2/H+-dependent manner, and chemogenetic suppression of Sst+ parafacial neurons, but not Pvalb+ or Cck+ neurons, increases baseline breathing. These results suggest Sst-expressing parafacial neurons contribute to RTN chemoreception and respiratory activity.


Subject(s)
Carbon Dioxide/metabolism , Chemoreceptor Cells/metabolism , Epilepsies, Myoclonic/metabolism , Hydrogen/metabolism , Intralaminar Thalamic Nuclei/metabolism , Lung/innervation , Respiration , Somatostatin/metabolism , Animals , Disease Models, Animal , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/physiopathology , Female , Glutamic Acid/metabolism , Intralaminar Thalamic Nuclei/physiopathology , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Neural Inhibition , Somatostatin/genetics , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...