Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 55(16): 4992-6, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26959076

ABSTRACT

Using time-resolved monochromatic high energy X-ray diffraction, we present an in situ study of the solvothermal crystallisation of a new MOF [Yb2(BDC)3(DMF)2]⋅H2O (BDC=benzene-1,4-dicarboxylate and DMF=N,N-dimethylformamide) under solvothermal conditions, from mixed water/DMF solvent. Analysis of high resolution powder patterns obtained reveals an evolution of lattice parameters and electron density during the crystallisation process and Rietveld analysis shows that this is due to a gradual topochemical replacement of coordinated solvent molecules. The water initially coordinated to Yb(3+) is replaced by DMF as the reaction progresses.

2.
Inorg Chem ; 52(14): 8171-82, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23815225

ABSTRACT

Mixed-metal iron-vanadium analogues of the 1,4-benzenedicarboxylate (BDC) metal-organic framework MIL-53 have been synthesized solvothermally in N,N'-dimethylformamide (DMF) from metal chlorides using initial Fe:V ratios of 2:1 and 1:1. At 200 °C and short reaction time (1 h), materials (Fe,V)(II/III)BDC(DMF(1-x)F(x)) crystallize directly, whereas the use of longer reaction times (3 days) at 170 °C yields phases of composition [(Fe,V)(III)0.5(Fe,V)0.5(II)(BDC)(OH,F)](0.5-)·0.5DMA(+) (DMA = dimethylammonium). The identity of the materials is confirmed using high-resolution powder X-ray diffraction, with refined unit cell parameters compared to known pure iron analogues of the same phases. The oxidation states of iron and vanadium in all samples are verified using X-ray absorption near edge structure (XANES) spectroscopy at the metal K-edges. This shows that in the two sets of materials each of the vanadium and the iron centers are present in both +2 and +3 oxidation states. The local environment and oxidation state of iron is confirmed by (57)Fe Mössbauer spectrometry. Infrared and Raman spectroscopies as a function of temperature allowed the conditions for removal of extra-framework species to be identified, and the evolution of µ2-hydroxyls to be monitored. Thus calcination of the mixed-valent, mixed-metal phases [(Fe,V)(III)0.5(Fe,V)0.5(II)(BDC)(OH,F)](0.5-)·0.5DMA(+) yields single-phase MIL-53-type materials, (Fe,V)(III)(BDC)(OH,F). The iron-rich, mixed-metal MIL-53 shows structural flexibility that is distinct from either the pure Fe material or the pure V material, with a thermally induced pore opening upon heating that is reversible upon cooling. In contrast, the material with a Fe:V content of 1:1 shows an irreversible expansion upon heating, akin to the pure vanadium analogue, suggesting the presence of some domains of vanadium-rich regions that can be permanently oxidized to V(IV).

3.
Inorg Chem ; 52(5): 2779-86, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23425315

ABSTRACT

Rare-earth layered hydroxides with intercalated tetrasulfonated porphyrins and corresponding to the chemical formula Ln2(OH)4.7(Por)0.33·2H2O (Ln = Eu(3+), Tb(3+); Por = 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and PdTPPS) have been prepared to investigate their photophysical properties. A slight variation of the synthetic procedure led to the metal-organic framework (MOF) assembled from a distorted octahedral oxometalate clusters [Eu6(µ6-O)(µ3-OH)8(H2O)14](8+). These secondary building units (SBUs) are linked together by six distorted porphyrin units. During activation, the original SBU loses not only water molecules from the coordination sphere but also the central µ6-O atom. The loss of the central atom results in the distortion of the octahedral [Eu6(µ6-O)(µ3-OH)8(H2O)14](8+) SBU into a trigonal antiprismatic [Eu6(µ3-OH)8(H2O)2](10+) SBU with two µ3-OH groups nearly in plane with the europium atoms and the reduction of pores to approximately 2 × 3 Å. As a result, the MOF has no accessible porosity. This transformation was thoroughly characterized by means of single-crystal X-ray crystallographic analysis of both phases. Solid-state photophysical investigations suggest that the MOF material is fluorescent; however, in contrast to the prepared layered hydroxides, the as-prepared MOF is an effective sensitizer of singlet oxygen, O2((1)Δg), with a relatively long lifetime of 23 ± 1 µs. The transition is also accompanied by variation in photophysical properties of the coordinated TPPS. The alteration of the fluorescence properties and of the O2((1)Δg) lifetime presents an opportunity for preparation of MOFs with oxygen-sensing ability or with oxidation potential toward organic molecules by O2((1)Δg).


Subject(s)
Lanthanoid Series Elements/chemistry , Metalloporphyrins/chemical synthesis , Metalloporphyrins/chemistry , Models, Molecular , Molecular Structure , Photochemical Processes
4.
Phys Chem Chem Phys ; 15(22): 8606-15, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23439974

ABSTRACT

The adsorption of N/S-containing heterocyclic organic molecules in the flexible iron(III) terephthalate MIL-53, Fe(III)(OH)(0.6)F(0.4)(O2C-C6H4-CO2)·(H2O), from the liquid phase was studied with in situ energy dispersive X-ray diffraction (EDXRD), in order to follow the adsorption-induced expansion of the structure. For comparison with the diffraction data, liquid phase adsorption isotherms were recorded for uptake of benzothiophene, benzothiazole and indole in isopropanol and in heptane. The solvent not only influences pore opening but is also a competing guest. The in situ EDXRD experiments allow the kinetics of guest uptake and the competition with solvent to be monitored directly. Indole uptake is limited; this adsorbate is barely capable of opening the closed, either hydrated or dehydrated, MIL-53(Fe) structure, or of penetrating the isopropanol-containing material in the concentration range under study. When isopropanol is used as a solvent, the guest molecules benzothiophene and benzothiazole must be present at a certain threshold concentration before substantial adsorption into the metal-organic framework takes place, eventually resulting in full opening of the structure. The fully expanded structures of benzothiophene or benzothiazole loaded MIL-53(Fe) materials have Imcm symmetry and a unit cell volume of ca. 1600 Å(3), and upon uptake of the guest molecules by the closed form (unit cell volume ~1000 Å(3)) no intermediate crystalline phases are seen. Successful uptake by MIL-53(Fe) requires that the adsorbate is primarily a good hydrogen bond acceptor; additionally, based on UV-visible spectroscopy, a charge-transfer interaction between the S atoms of benzothiophene and the aromatic rings in the MOF pore wall is proposed.


Subject(s)
Ferric Compounds/chemistry , Heterocyclic Compounds/chemistry , Adsorption , Surface Properties , X-Ray Diffraction
5.
Chem Commun (Camb) ; 48(86): 10639-41, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23001396

ABSTRACT

The synthesis and characterisation of a three-dimensional lithium-organic framework MIL-145 is described, which upon thermal treatment yields a second open framework, MIL-146, that contains four and three-coordinate lithium centres: the coordinatively unsaturated trigonal planar lithium centres are able to reversibly bind water with crystallinity maintained, while the dehydrated phase shows preferential adsorption of CO(2) over N(2).

6.
Chemistry ; 17(25): 7069-79, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21557349

ABSTRACT

A comprehensive, time-resolved, energy-dispersive X-ray diffraction study of the uptake of liquid alcohols (methanol, ethanol, propan-1-ol and propan-2-ol) by the flexible metal-organic framework solid MIL-53(Fe)[H(2)O] is reported. In the case of the primary alcohols, a fluorinated version of the MIL-53(Fe) host (C2/c symmetry V ca. 1000 Å(3)), in which a fraction of framework hydroxides are replaced by fluoride, shows uptake of alcohols to give initially a partially expanded phase (C2/c symmetry, V ca. 1200 Å(3)) followed by an expanded form of the material (either Imcm or Pnam symmetry, V ca. 1600 Å(3)). In the case of methanol-water mixtures, the EDXRD data show that the partially open intermediate phase undergoes volume expansion during its existence, before switching to a fully open structure if concentrated methanol is used; analogous behaviour is seen if the initial guest is propan-2-ol, which then is replaced by pyridine, where a continuous shift of Bragg peaks within C2/c symmetry is observed. In contrast to the partially fluorinated materials, the purely hydroxylated host materials show little tendency to stabilise partially open forms of MIL-53(Fe) with primary alcohols and the kinetics of guest introduction are markedly slower without the framework fluorination: this is exemplified by the exchange of water by propan-2-ol, where a partially open C2/c phase is formed in a step-wise manner. Our study defines the various possible pathways of liquid-phase uptake of molecular guests by flexible solid MIL-53(Fe).

7.
Chem Commun (Camb) ; 47(2): 713-5, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21072392

ABSTRACT

The flexible metal-organic framework MIL-53(Cr) undergoes a dramatic volume expansion upon immersion in water at room temperature to form a crystalline hydrate in which water is held as a hydrogen-bonded tube: the hydration is readily reversible under ambient conditions as shown by time-resolved powder X-ray diffraction.

8.
Chem Commun (Camb) ; 46(42): 7987-9, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-20865189

ABSTRACT

The hydrolysis of the DMF solvent (DMF = N,N'-dimethylformamide) generates in situ the template cations DMA(+) (dimethylammonium cation): it leads to the first MOF type solid Fe(III)(0.5)Fe(II)(0.5)(OH,F)(O(2)C-C(6)H(4)-CO(2))·0.5DMA with a regular charge order Fe(III)/Fe(II) and an anionic framework with pores filled by counter-cations which behaves as a quasi-1D AF system with alternate localized Fe(II) and Fe(III) moments.

10.
J Am Chem Soc ; 131(25): 8775-7, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19505146

ABSTRACT

Hydrogen sulfide gravimetric isotherm adsorption measurements were carried out on MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks (MOFs). A two-step adsorption mechanism related to a breathing effect was observed for MIL-53 terephthalate-based MOFs. Methane adsorption measurements highlighted the regenerability of MIL-53(Al, Cr) and MIL-47(V) MOFs after H(2)S treatment, whereas MIL-100 and MIL-101 CH(4) adsorption capacities were significantly decreased.

11.
Chem Commun (Camb) ; (39): 4732-4, 2008 Oct 21.
Article in English | MEDLINE | ID: mdl-18830475

ABSTRACT

The thermal behaviour of the nanoporous iron(iii) terephthalate MIL-53 is in stark contrast to its chromium and aluminium analogues which show an expansion of the cell during dehydration; with iron, reversible dehydration occurs via evolution of the structure through a highly distorted metastable anhydrous phase to a more regular phase above 423 K in which pore volume remains approximately constant.

14.
J Am Chem Soc ; 128(46): 14889-96, 2006 Nov 22.
Article in English | MEDLINE | ID: mdl-17105299

ABSTRACT

A new three-dimensional chromium(III) naphthalene tetracarboxylate, CrIII3O(H2O)2F{C10H4(CO2)4}1.5.6H2O (MIL-102), has been synthesized under hydrothermal conditions from an aqueous mixture of Cr(NO3)3.9H2O, naphthalene-1,4,5,8-tetracarboxylic acid, and HF. Its structure, solved ab initio from X-ray powder diffraction data, is built up from the connection of trimers of trivalent chromium octahedra and tetracarboxylate moieties. This creates a three-dimensional structure with an array of small one-dimensional channels filled with free water molecules, which interact through hydrogen bonds with terminal water molecules and oxygen atoms from the carboxylates. Thermogravimetric analysis and X-ray thermodiffractometry indicate that MIL-102 is stable up to approximately 300 degrees C and shows zeolitic behavior. Due to topological frustration effects, MIL-102 remains paramagnetic down to 5 K. Finally, MIL-102 exhibits a hydrogen storage capacity of approximately 1.0 wt % at 77 K when loaded at 3.5 MPa (35 bar). The hydrogen uptake is discussed in relation with the structural characteristics and the molecular simulation results. The adsorption behavior of MIL-102 at 304 K resembles that of small-pore zeolites, such as silicalite. Indeed, the isotherms of CO2, CH4, and N2 show a maximum uptake at 0.5 MPa, with no further significant adsorption up to 3 MPa. Crystal data for MIL-102: hexagonal space group P(-)6 (No. 169), a = 12.632(1) A, c = 9.622(1) A.

15.
Chem Commun (Camb) ; (14): 1518-20, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16575446

ABSTRACT

EXAFS data measured from amorphous intermediates and crystallisation solutions provides the first evidence that trimeric iron oxide secondary building units remain intact during crystallisation of the metal-organic framework MIL-89 from starting materials to products.

16.
J Am Chem Soc ; 128(10): 3218-27, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16522102

ABSTRACT

A study of the zeotypic giant pores chromium(III) tricarboxylate Cr(III)3OF(x)(OH)(1-x)(H2O)2 x {C6H3-(CO2)3}2 x nH2O (MIL-100) has been performed. First, its thermal behavior, studied by X-ray thermodiffractometry and infrared spectroscopy, indicates that the departure of water occurs without any pore contraction and no loss in crystallinity, which confirms the robustness of the framework. In a second step, IR spectroscopy has shown the presence of three distinct types of hydroxy groups depending on the outgassing conditions; first, at high temperatures (573 K), only Cr-OH groups with a medium Brønsted acidity are present; at lower temperatures, two types of Cr-H2O terminal groups are observed; and at room temperature, their relatively high Brønsted acidity allows them to combine with H-bonded water molecules. Finally, a CO sorption study has revealed that at least three Lewis acid sites are present in MIL-100 and that fluorine atoms are located on a terminal position on the trimers of octahedra. A first result of grafting of methanol molecules acting as basic organic molecules on the chromium sites has also been shown, opening the way for a postsynthesis functionalization of MIL-100.

17.
Chem Commun (Camb) ; (3): 284-6, 2006 Jan 21.
Article in English | MEDLINE | ID: mdl-16391735

ABSTRACT

We report here a new family of isoreticular MOFs, comprising three larger analogues of the nanoporous metallocarboxylate MIL-88; these solids were synthesized using a controlled SBU approach and the three crystal structures were solved using an original simulation-assisted structure determination method in direct space.

18.
J Am Chem Soc ; 127(39): 13519-21, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16190714

ABSTRACT

A distinct step in the isotherm occurs during the adsorption of CO2 on MIL-53 at 304 K. Such behavior is neither observed during the adsorption of CH4 on MIL-53 nor during the adsorption on the isostructural MIL-47. This phenomenon seems to be due to a different mechanism than that of previous adsorption steps on MOF samples. It is suggested that a breathing behavior is induced in MIL-53 during CO2 adsorption.

19.
Acc Chem Res ; 38(4): 217-25, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15835868

ABSTRACT

In the domain of porous solids with inorganic or hybrid frameworks, the combination of mastered chemistry and of computer simulations pushes forward the limits of the classical approach and allows the full determination from powder diffraction data of architectures with cells of several hundred thousand cubic angstroms with hierarchies of giant pores and unprecedented Langmuir surfaces. The different limits induced by this new approach are analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...