Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Psychiatry ; 24(2): 294-311, 2019 02.
Article in English | MEDLINE | ID: mdl-30401811

ABSTRACT

The molecular basis of how chromosome 16p13.11 microduplication leads to major psychiatric disorders is unknown. Here we have undertaken brain imaging of patients carrying microduplications in chromosome 16p13.11 and unaffected family controls, in parallel with iPS cell-derived cerebral organoid studies of the same patients. Patient MRI revealed reduced cortical volume, and corresponding iPSC studies showed neural precursor cell (NPC) proliferation abnormalities and reduced organoid size, with the NPCs therein displaying altered planes of cell division. Transcriptomic analyses of NPCs uncovered a deficit in the NFκB p65 pathway, confirmed by proteomics. Moreover, both pharmacological and genetic correction of this deficit rescued the proliferation abnormality. Thus, chromosome 16p13.11 microduplication disturbs the normal programme of NPC proliferation to reduce cortical thickness due to a correctable deficit in the NFκB signalling pathway. This is the first study demonstrating a biologically relevant, potentially ameliorable, signalling pathway underlying chromosome 16p13.11 microduplication syndrome in patient-derived neuronal precursor cells.


Subject(s)
Chromosomes, Human, Pair 16/genetics , Mental Disorders/genetics , NF-kappa B/metabolism , Abnormalities, Multiple/genetics , Adult , Aged , Brain/diagnostic imaging , Brain/physiopathology , Cell Proliferation , Chromosome Duplication/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Male , Middle Aged , NF-kappa B/genetics , Neuroimaging/methods , Neurons , Organoids/physiology , Signal Transduction , Stem Cells/physiology
3.
J Physiol ; 596(14): 2747-2771, 2018 07.
Article in English | MEDLINE | ID: mdl-30008190

ABSTRACT

Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.


Subject(s)
Nerve Tissue Proteins/metabolism , Nervous System Diseases/physiopathology , Neuronal Plasticity , Synapses/physiology , Humans , Nervous System Diseases/metabolism , Signal Transduction
5.
Neuron ; 63(6): 711-3, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19778497

ABSTRACT

In this issue of Neuron, Kim et al. and Enomoto et al. show that DISC1 plays a key role in regulating postnatal brain development though interaction with Girdin. Girdin in turn regulates AKT signaling. Thus, another facet of the role of DISC1 is established, shedding more light on fundamental brain processes and the developmental basis of major psychiatric disorders.


Subject(s)
Brain/growth & development , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vesicular Transport Proteins/metabolism , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...