Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Sci ; 24(1): 133-140, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26299521

ABSTRACT

Rensch's rule proposes a universal allometric scaling phenomenon across species where sexual size dimorphism (SSD) has evolved: in taxa with male-biased dimorphism, degree of SSD should increase with overall body size, and in taxa with female-biased dimorphism, degree of SSD should decrease with increasing average body size. Rensch's rule appears to hold widely across taxa where SSD is male-biased, but not consistently when SSD is female-biased. Furthermore, studies addressing this question within species are rare, so it remains unclear whether this rule applies at the intraspecific level. We assess body size and SSD within Tribolium castaneum (Herbst), a species where females are larger than males, using 21 populations derived from separate locations across the world, and maintained in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are highly susceptible to variations in temperature, diet quality and other environmental factors. Crucially, here we nullify interference of such confounds as all populations were maintained under identical conditions (similar densities, standard diet and exposed to identical temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for all populations, and found body size variation across populations, and (as expected) female-biased SSD in all populations. We test whether Rensch's rule holds for our populations, but find isometry, i.e. no allometry for SSD. Our results thus show that Rensch's rule does not hold across populations within this species. Our intraspecific test matches previous interspecific studies showing that Rensch's rule fails in species with female-biased SSD.


Subject(s)
Tribolium/anatomy & histology , Animals , Body Size , Female , Male , Sex Characteristics
2.
Science ; 333(6050): 1739-42, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21940892

ABSTRACT

The widespread phenomenon of polyandry (mating by females with multiple males) is an evolutionary puzzle, because females can sustain costs from promiscuity, whereas full fertility can be provided by a single male. Using the red flour beetle, Tribolium castaneum, we identify major fitness benefits of polyandry to females under inbreeding, when the risks of fertilization by incompatible male haplotypes are especially high. Fifteen generations after inbred populations had passed through genetic bottlenecks, we recorded increased levels of female promiscuity compared with noninbred controls, most likely due to selection from prospective fitness gains through polyandry. These data illustrate how this common mating pattern can evolve if population genetic bottlenecks increase the risks of fitness depression due to fertilization by sperm carrying genetically incompatible haplotypes.


Subject(s)
Biological Evolution , Genetic Fitness , Inbreeding , Sexual Behavior, Animal , Tribolium/physiology , Animals , Female , Fertility , Fertilization , Male , Reproduction , Tribolium/genetics
3.
Evolution ; 65(3): 713-24, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21091981

ABSTRACT

Between-individual variance in potential reproductive rate theoretically creates a load in reproducing populations by driving sexual selection of male traits for winning competitions, and female traits for resisting the costs of multiple mating. Here, using replicated experimental evolution under divergent operational sex ratios (OSR, 9:1 or 1:6 ♀:♂) we empirically identified the parallel reproductive fitness consequences for females and males in the promiscuous flour beetle Tribolium castaneum. Our results revealed clear evidence that sexual conflict resides within the T. castaneum mating system. After 20 generations of selection, females from female-biased OSRs became vulnerable to multiple mating, and showed a steep decrease in reproductive fitness with an increasing number of control males. In contrast, females from male-biased OSRs showed no change in reproductive fitness, irrespective of male numbers. The divergence in reproductive output was not explained by variation in female mortality. Parallel assays revealed that males also responded to experimental evolution: individuals from male-biased OSRs obtained 27% greater reproductive success across 7-day competition for females with a control male rival, compared to males from the female-biased lines. Subsequent assays suggest that these differences were not due to postcopulatory sperm competitiveness, but to precopulatory/copulatory competitive male mating behavior.


Subject(s)
Tribolium/genetics , Animals , Biological Evolution , Competitive Behavior , Female , Male , Sex Characteristics , Sex Ratio , Sexual Behavior, Animal , Tribolium/physiology
4.
Proc Biol Sci ; 277(1699): 3483-91, 2010 Nov 22.
Article in English | MEDLINE | ID: mdl-20554548

ABSTRACT

As populations decline to levels where reproduction among close genetic relatives becomes more probable, subsequent increases in homozygous recessive deleterious expression and/or loss of heterozygote advantage can lead to inbreeding depression. Here, we measure how inbreeding across replicate lines of the flour beetle Tribolium castaneum impacts on male reproductive fitness in the absence or presence of male-male competition. Effects on male evolution from mating pattern were removed by enforcing monogamous mating throughout. After inbreeding across eight generations, we found that male fertility in the absence of competition was unaffected. However, we found significant inbreeding depression of sperm competitiveness: non-inbred males won 57 per cent of fertilizations in competition, while inbred equivalents only sired 42 per cent. We also found that the P(2) 'offence' role in sperm competition was significantly more depressed under inbreeding than sperm 'defence' (P(1)). Mating behaviour did not explain these differences, and there was no difference in the viability of offspring sired by inbred or non-inbred males. Sperm length variation was significantly greater in the ejaculates of inbred males. Our results show that male ability to achieve normal fertilization success was not depressed under strong inbreeding, but that inbreeding depression in these traits occurred when conditions of sperm competition were generated.


Subject(s)
Inbreeding , Sexual Behavior, Animal/physiology , Spermatozoa/physiology , Tribolium/genetics , Tribolium/physiology , Animals , Female , Male , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...