Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Pharmacol Ther ; 109(2): 383-393, 2021 02.
Article in English | MEDLINE | ID: mdl-32681519

ABSTRACT

CX-072 is an anti-PD-L1 (programmed death ligand 1) Probody therapeutic (Pb-Tx) designed to be preferentially activated by proteases in the tumor microenvironment and not in healthy tissue. Here, we report the model-informed drug development of CX-072. A quantitative systems pharmacology (QSP) model that captured known mechanisms of Pb-Tx activation, biodistribution, elimination, and target engagement was used to inform clinical translation. The QSP model predicted that a trough level of masked CX-072 (intact CX-072) of 13-99 nM would correspond to a targeted, 95% receptor occupancy in the tumor. The QSP model predictions appeared consistent with preliminary human single-dose pharmacokinetic (PK) data following CX-072 0.03-30.0 mg/kg as monotherapy: CX-072 circulated predominantly as intact CX-072 with minimal evidence of target-mediated drug disposition. A preliminary population PK (POPPK) analysis based upon 130 subjects receiving 0.03-30.0 mg/kg as monotherapy included a provision for a putative time-dependent and dose-dependent antidrug antibody (ADA) effect on clearance (CL) with a mixture model. Preliminary POPPK estimates for intact CX-072 time-invariant CL and volume of distribution were 0.306 L/day and 4.84 L, respectively. Exposure-response analyses did not identify statistically significant relationships with best change from baseline sum of measurements and either adverse events of grade ≥ 3 or of special interest. Simulations suggested that > 95% of patients receiving CX-072 10 mg/kg every two weeks would exceed the targeted trough level regardless of ADA, and that dose adjustment by body weight was not necessary, supporting a fixed 800 mg dose for evaluation in phase II.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/metabolism , Dose-Response Relationship, Drug , Drug Development/methods , Humans , Male , Models, Biological , Tissue Distribution/physiology , Tumor Microenvironment/drug effects
2.
CPT Pharmacometrics Syst Pharmacol ; 8(9): 676-684, 2019 09.
Article in English | MEDLINE | ID: mdl-31250966

ABSTRACT

PROBODY therapeutics (Pb-Tx) are protease-activatable prodrugs of monoclonal antibodies (mAbs) designed to target tumors where protease activity is elevated while avoiding normal tissue. They are composed of a parental mAb, a mask that inhibits antibody binding to target, and a protease-cleavable substrate between the mask and the mAb. We report a quantitative systems pharmacology model for the rational design and clinical translation of Pb-Tx. The model adequately described monkey pharmacokinetic data following the administration of six anti-CD166 Pb-Tx of varying mask strength and substrate cleavability and captured the trend of decreasing Pb-Tx systemic clearance with increasing mask strength. Projections to humans suggested both higher levels of Pb-Tx in tumor relative to parental mAb and an optimal mask strength for maximizing tumor receptor-mediated uptake. Simulations further suggested the majority of circulating species in humans would be intact/masked Pb-Tx, with no significant flux of cleaved/activated species from tumor to the systemic compartment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacokinetics , Neoplasms/drug therapy , Prodrugs/pharmacokinetics , Animals , Antineoplastic Agents, Immunological/chemistry , Cell Line, Tumor , Humans , Macaca fascicularis , Mice , Models, Biological , Prodrugs/chemistry , Systems Biology , Tissue Distribution , Xenograft Model Antitumor Assays
3.
CPT Pharmacometrics Syst Pharmacol ; 7(6): 404-412, 2018 06.
Article in English | MEDLINE | ID: mdl-29637732

ABSTRACT

Crigler-Najjar syndrome type 1 (CN1) is an autosomal recessive disease caused by a marked decrease in uridine-diphosphate-glucuronosyltransferase (UGT1A1) enzyme activity. Delivery of hUGT1A1-modRNA (a modified messenger RNA encoding for UGT1A1) as a lipid nanoparticle is anticipated to restore hepatic expression of UGT1A1, allowing normal glucuronidation and clearance of bilirubin in patients. To support translation from preclinical to clinical studies, and first-in-human studies, a quantitative systems pharmacology (QSP) model was developed. The QSP model was calibrated to plasma and liver mRNA, and total serum bilirubin in Gunn rats, an animal model of CN1. This QSP model adequately captured the observed plasma and liver biomarker behavior across a range of doses and dose regimens in Gunn rats. First-in-human dose projections made using the translated model indicated that 0.5 mg/kg Q4W dose should provide a clinically meaningful and sustained reduction of >5 mg/dL in total bilirubin levels.


Subject(s)
Crigler-Najjar Syndrome/therapy , Glucuronosyltransferase/genetics , RNA/administration & dosage , RNA/pharmacokinetics , Animals , Bilirubin/blood , Crigler-Najjar Syndrome/genetics , Crigler-Najjar Syndrome/metabolism , Disease Models, Animal , Genetic Therapy , Glucuronosyltransferase/metabolism , Humans , Liver/chemistry , Models, Theoretical , Nanoparticles , RNA, Messenger/blood , RNA, Messenger/metabolism , Rats , Rats, Gunn , Treatment Outcome
4.
Curr Opin Toxicol ; 4: 79-87, 2017 Jun.
Article in English | MEDLINE | ID: mdl-29308440

ABSTRACT

The overarching goal of modern drug development is to optimize therapeutic benefits while minimizing adverse effects. However, inadequate efficacy and safety concerns remain to be the major causes of drug attrition in clinical development. For the past 80 years, toxicity testing has consisted of evaluating the adverse effects of drugs in animals to predict human health risks. The U.S. Environmental Protection Agency recognized the need to develop innovative toxicity testing strategies and asked the National Research Council to develop a long-range vision and strategy for toxicity testing in the 21st century. The vision aims to reduce the use of animals and drug development costs through the integration of computational modeling and in vitro experimental methods that evaluates the perturbation of toxicity-related pathways. Towards this vision, collaborative quantitative systems pharmacology and toxicology modeling endeavors (QSP/QST) have been initiated amongst numerous organizations worldwide. In this article, we discuss how quantitative structure-activity relationship (QSAR), network-based, and pharmacokinetic/pharmacodynamic modeling approaches can be integrated into the framework of QST models. Additionally, we review the application of QST models to predict cardiotoxicity and hepatotoxicity of drugs throughout their development. Cell and organ specific QST models are likely to become an essential component of modern toxicity testing, and provides a solid foundation towards determining individualized therapeutic windows to improve patient safety.

5.
Nat Methods ; 8(6): 487-93, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21516115

ABSTRACT

Whereas genomic data are universally machine-readable, data from imaging, multiplex biochemistry, flow cytometry and other cell- and tissue-based assays usually reside in loosely organized files of poorly documented provenance. This arises because the relational databases used in genomic research are difficult to adapt to rapidly evolving experimental designs, data formats and analytic algorithms. Here we describe an adaptive approach to managing experimental data based on semantically typed data hypercubes (SDCubes) that combine hierarchical data format 5 (HDF5) and extensible markup language (XML) file types. We demonstrate the application of SDCube-based storage using ImageRail, a software package for high-throughput microscopy. Experimental design and its day-to-day evolution, not rigid standards, determine how ImageRail data are organized in SDCubes. We applied ImageRail to collect and analyze drug dose-response landscapes in human cell lines at single-cell resolution.


Subject(s)
Computational Biology/methods , Data Interpretation, Statistical , Software , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Database Management Systems , Databases, Factual , Dose-Response Relationship, Drug , ErbB Receptors/antagonists & inhibitors , Gefitinib , Humans , Microscopy/statistics & numerical data , Programming Languages , Quinazolines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...