Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38330448

ABSTRACT

Dual panel PET systems, such as Breast-PET (B-PET) scanner, exhibit strong asymmetric and anisotropic spatially-variant deformations in the reconstructed images due to the limited-angle data and strong depth of interaction effects for the oblique LORs inherent in such systems. In our previous work, we studied time-of-flight (TOF) effects and image-based spatially-variant PSF resolution models within dual-panel PET reconstruction to reduce these deformations. The application of PSF based models led to better and more uniform quantification of small lesions across the field of view (FOV). However, the ability of such a model to correct for PSF deformation is limited to small objects. On the other hand, large object deformations caused by the limited-angle reconstruction cannot be corrected with the PSF modeling alone. In this work, we investigate the ability of deep-learning (DL) networks to recover such strong spatially-variant image deformations using first simulated PSF deformations in image space of a generic dual panel PET system and then using simulated and acquired phantom reconstructions from dual panel B-PET system developed in our lab at University of Pennsylvania. For the studies using real B-PET data, the network was trained on the simulated synthetic data sets providing ground truth for objects resembling experimentally acquired phantoms on which the network deformation corrections were then tested. The synthetic and acquired limited-angle B-PET data were reconstructed using DIRECT-RAMLA reconstructions, which were then used as the network inputs. Our results demonstrate that DL approaches can significantly eliminate deformations of limited angle systems and improve their quantitative performance.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Algorithms , Phantoms, Imaging
2.
IEEE Trans Med Imaging ; 39(11): 3725-3736, 2020 11.
Article in English | MEDLINE | ID: mdl-32746117

ABSTRACT

In a low-statistics PET imaging context, the positive bias in regions of low activity is a burning issue. To overcome this problem, algorithms without the built-in non-negativity constraint may be used. They allow negative voxels in the image to reduce, or even to cancel the bias. However, such algorithms increase the variance and are difficult to interpret since the resulting images contain negative activities, which do not hold a physical meaning when dealing with radioactive concentration. In this paper, a post-processing approach is proposed to remove these negative values while preserving the local mean activities. Its original idea is to transfer the value of each voxel with negative activity to its direct neighbors under the constraint of preserving the local means of the image. In that respect, the proposed approach is formalized as a linear programming problem with a specific symmetric structure, which makes it solvable in a very efficient way by a dual-simplex-like iterative algorithm. The relevance of the proposed approach is discussed on simulated and on experimental data. Acquired data from an yttrium-90 phantom show that on images produced by a non-constrained algorithm, a much lower variance in the cold area is obtained after the post-processing step, at the price of a slightly increased bias. More specifically, when compared with the classical OSEM algorithm, images are improved, both in terms of bias and of variance.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Algorithms , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...