Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2638, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149678

ABSTRACT

The momentum carried by structured light fields exhibits a rich array of surprising features. In this work, we generate transverse orbital angular momentum (TOAM) in the interference field of two parallel and counter-propagating linearly-polarised focused beams, synthesising an array of identical handedness vortices carrying intrinsic TOAM. We explore this structured light field using an optomechanical sensor, consisting of an optically levitated silicon nanorod, whose rotation is a probe of the optical angular momentum, which generates an exceptionally large torque. This simple creation and direct observation of TOAM will have applications in studies of fundamental physics, the optical manipulation of matter and quantum optomechanics.

2.
Rep Prog Phys ; 83(2): 026401, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31825901

ABSTRACT

Optomechanics is concerned with the use of light to control mechanical objects. As a field, it has been hugely successful in the production of precise and novel sensors, the development of low-dissipation nanomechanical devices, and the manipulation of quantum signals. Micro- and nano-particles levitated in optical fields act as nanoscale oscillators, making them excellent low-dissipation optomechanical objects, with minimal thermal contact to the environment when operating in vacuum. Levitated optomechanics is seen as the most promising route for studying high-mass quantum physics, with the promise of creating macroscopically separated superposition states at masses of 106 amu and above. Optical feedback, both using active monitoring or the passive interaction with an optical cavity, can be used to cool the centre-of-mass of levitated nanoparticles well below 1 mK, paving the way to operation in the quantum regime. In addition, trapped mesoscopic particles are the paradigmatic system for studying nanoscale stochastic processes, and have already demonstrated their utility in state-of-the-art force sensing.

3.
Light Sci Appl ; 8: 37, 2019.
Article in English | MEDLINE | ID: mdl-30992987

ABSTRACT

Optical resonators are essential for fundamental science, applications in sensing and metrology, particle cooling, and quantum information processing. Cavities can significantly enhance interactions between light and matter. For many applications they perform this task best if the mode confinement is tight and the photon lifetime is long. Free access to the mode center is important in the design to admit atoms, molecules, nanoparticles, or solids into the light field. Here, we demonstrate how to machine microcavity arrays of extremely high quality in pristine silicon. Etched to an almost perfect parabolic shape with a surface roughness on the level of 2 Å and coated to a finesse exceeding F = 500,000, these new devices can have lengths below 17 µm, confining the photons to 5 µm waists in a mode volume of 88λ3. Extending the cavity length to 150 µm, on the order of the radius of curvature, in a symmetric mirror configuration yields a waist smaller than 7 µm, with photon lifetimes exceeding 64 ns. Parallelized cleanroom fabrication delivers an entire microcavity array in a single process. Photolithographic precision furthermore yields alignment structures that result in mechanically robust, pre-aligned, symmetric microcavity arrays, representing a light-matter interface with unprecedented performance.

4.
Entropy (Basel) ; 20(5)2018 Apr 28.
Article in English | MEDLINE | ID: mdl-33265416

ABSTRACT

Levitated Nanoparticles have received much attention for their potential to perform quantum mechanical experiments even at room temperature. However, even in the regime where the particle dynamics are purely classical, there is a lot of interesting physics that can be explored. Here we review the application of levitated nanoparticles as a new experimental platform to explore stochastic thermodynamics in small systems.

5.
Nat Commun ; 8(1): 1670, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29162836

ABSTRACT

Nanomechanical devices have attracted the interest of a growing interdisciplinary research community, since they can be used as highly sensitive transducers for various physical quantities. Exquisite control over these systems facilitates experiments on the foundations of physics. Here, we demonstrate that an optically trapped silicon nanorod, set into rotation at MHz frequencies, can be locked to an external clock, transducing the properties of the time standard to the rod's motion with a remarkable frequency stability f r/Δf r of 7.7 × 1011. While the dynamics of this periodically driven rotor generally can be chaotic, we derive and verify that stable limit cycles exist over a surprisingly wide parameter range. This robustness should enable, in principle, measurements of external torques with sensitivities better than 0.25 zNm, even at room temperature. We show that in a dilute gas, real-time phase measurements on the locked nanorod transduce pressure values with a sensitivity of 0.3%.

6.
Opt Express ; 24(2): 1392-401, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832520

ABSTRACT

We demonstrate simultaneous center-of-mass cooling of two coupled oscillators, consisting of a microsphere-cantilever and a tapered optical fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via the evanescent field of the taper, provides a transduction signal that continuously monitors the relative motion between these two microgram objects with a sensitivity of 3 pm. The cavity enhanced optical dipole force is used to provide feedback damping on the motion of the micron-diameter taper, whereas a piezo stack is used to damp the motion of the much larger (up to 180 µm in diameter), heavier (up to 1.5 × 10(-7) kg) and stiffer microsphere-cantilever. In each feedback scheme multiple mechanical modes of each oscillator can be cooled, and mode temperatures below 10 K are reached for the dominant mode, consistent with limits determined by the measurement noise of our system. This represents stabilization on the picometer level and is the first demonstration of using WGM resonances to cool the mechanical modes of both the WGM resonator and its coupling waveguide.

SELECTION OF CITATIONS
SEARCH DETAIL
...