Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 10(10): e0005022, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27764112

ABSTRACT

Schistosomiasis remains a health burden in many parts of the world. The complex life cycle of Schistosoma parasites and the economic and societal conditions present in endemic areas make the prospect of eradication unlikely in the foreseeable future. Continued and vigorous research efforts must therefore be directed at this disease, particularly since only a single World Health Organization (WHO)-approved drug is available for treatment. The National Institutes of Health (NIH)-National Institute of Allergy and Infectious Diseases (NIAID) Schistosomiasis Resource Center (SRC) at the Biomedical Research Institute provides investigators with the critical raw materials needed to carry out this important research. The SRC makes available, free of charge (including international shipping costs), not only infected host organisms but also a wide array of molecular reagents derived from all life stages of each of the three main human schistosome parasites. As the field of schistosomiasis research rapidly advances, it is likely to become increasingly reliant on omics, transgenics, epigenetics, and microbiome-related research approaches. The SRC has and will continue to monitor and contribute to advances in the field in order to support these research efforts with an expanding array of molecular reagents. In addition to providing investigators with source materials, the SRC has expanded its educational mission by offering a molecular techniques training course and has recently organized an international schistosomiasis-focused meeting. This review provides an overview of the materials and services that are available at the SRC for schistosomiasis researchers, with a focus on updates that have occurred since the original overview in 2008.


Subject(s)
Biomedical Research , National Institute of Allergy and Infectious Diseases (U.S.) , Schistosoma , Schistosomiasis , Animals , Biological Specimen Banks , Humans , National Institute of Allergy and Infectious Diseases (U.S.)/statistics & numerical data , United States , World Health Organization
2.
Front Genet ; 5: 230, 2014.
Article in English | MEDLINE | ID: mdl-25101114

ABSTRACT

Biomphalaria glabrata snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis in the Western hemisphere. For the past two decades, tremendous advances have been made in research aimed at elucidating the molecular basis of the snail/parasite interaction. The growing concern that there is no vaccine to prevent schistosomiasis and only one effective drug in existence provides the impetus to develop new control strategies based on eliminating schistosomes at the snail-stage of the life cycle. To elucidate why a given snail is not always compatible to each and every schistosome it encounters, B. glabrata that are either resistant or susceptible to a given strain of S. mansoni have been employed to track molecular mechanisms governing the snail/schistosome relationship. With such snails, genetic markers for resistance and susceptibility were identified. Additionally, differential gene expression studies have led to the identification of genes that underlie these phenotypes. Lately, the role of schistosomes in mediating non-random relocation of gene loci has been identified for the first time, making B. glabrata a model organism where chromatin regulation by changes in nuclear architecture, known as spatial epigenetics, orchestrated by a major human parasite can now be investigated. This review will highlight the progress that has been made in using molecular approaches to describe snail/schistosome compatibility issues. Uncovering the signaling networks triggered by schistosomes that provide the impulse to turn genes on and off in the snail host, thereby controlling the outcome of infection, could also yield new insights into anti-parasite mechanism(s) that operate in the human host as well.

3.
Mol Biochem Parasitol ; 126(2): 181-91, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12615317

ABSTRACT

The internal defense mechanism of the snail Biomphalaria glabrata during a schistosome infection is activated and mediated via the immune effector cells known as hemocytes. Since resistance and susceptibility to schistosome infection is known to be genetically determined, our interest was to use the EST approach as a gene discovery tool to examine transcription profiles in hemocytes of resistant snails pre- and post-exposure to Schistosoma mansoni. Comparative analysis of the transcripts suggested that parasite exposure caused an active metabolic response in the hemocytes. The most abundant transcripts were those showing 23-74% similarity to known reverse transcriptases (RT). Further characterization by RT-PCR indicated the RT transcripts were expressed in normal snails, parasite exposed snails, and the embryonic cell line Bge. To determine whether the occurrence of RT transcripts correlates to the presence of functional enzyme activity in the snails, RT assays were performed from both resistant and susceptible snails, pre- and post-exposure to miracidia, using protein extracts from the head-foot and posterior region tissues. Results indicated that in the resistant snail, RT activity was greater in the posterior region than in the head-foot. After exposure, however, RT activity increased dramatically in the head-foot, with peak activity at 24 h post-exposure. The detection of RT activity in B. glabrata was unexpected and the role of this enzyme in the hemocyte-mediated killing of parasites is not yet known. However, identification of this and other transcripts from these cells by the EST approach provides a useful resource towards elucidating the molecular basis of resistance/susceptibility in this snail-host parasite relationship.


Subject(s)
Biomphalaria/genetics , Hemocytes/parasitology , Schistosoma mansoni/pathogenicity , Amino Acid Sequence , Animals , Biomphalaria/enzymology , Biomphalaria/parasitology , Blotting, Southern , Cell Line , Ciona intestinalis/enzymology , Ciona intestinalis/genetics , Expressed Sequence Tags , Hemocytes/physiology , Molecular Sequence Data , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Homology, Amino Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...