Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(8): e0254139, 2021.
Article in English | MEDLINE | ID: mdl-34411137

ABSTRACT

Long-distance transport is associated with stress-related changes in equine immune function, and shipping-associated illnesses are often reported. Horses are frequently transported short distances, yet the effects of short-term transport on immune function remain largely unknown. Twelve horses, aged 15-30 yr, were assigned to either the control (n = 6) or treatment (n = 6) groups; treatment horses received a daily antioxidant supplement 3 weeks before and after transport. All horses were transported for approximately 1.5-2 hr on Day 0. Blood was collected via jugular venipuncture at 15-min pre- and post-transport and on Days -21, 1, 3, 7, 14, and 21. Body temperature, heart rate, body weight, total cortisol, and gene expression of IFNγ, IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12α, IL-17α, SAA1, and TNFα in whole blood were measured. Peripheral blood mononuclear cells were isolated, stimulated with PMA/ionomycin, and stained for IFNγ and TNFα before analysis via flow cytometry. Statistical analyses were performed with significance set at P < 0.05 (SAS 9.4). Transport and supplementation did not appear to affect body weight, heart rate, IL-4, IL-8, IL-12α, IL-17α, change (Δ) in the % and mean fluorescence intensity (MFI) of IFNγ+ lymphocytes after stimulation, or Δ in the % and MFI of TNFα+ lymphocytes after stimulation. Supplementation decreased IL-1ß and SAA1 expression. Transport increased total cortisol concentration, body temperature, and IL-2, IL-6, and IL-10 expression but decreased IL-1ß, TNFα, and IFNγ expression. Short-term transportation affected physiological, endocrine, and immune responses; supplementation may ameliorate inflammation in aged horses. Immune responses were most altered at 15-min post-transport and typically recovered by Day 1, suggesting that horses may be vulnerable to disease during and almost immediately after short-term transport.


Subject(s)
Aging/immunology , Antioxidants/pharmacology , Cytokines/immunology , Horses/immunology , Lymphocytes/immunology , Stress, Physiological/immunology , Animals , Female , Male , Transportation
2.
Vet Immunol Immunopathol ; 235: 110207, 2021 May.
Article in English | MEDLINE | ID: mdl-33735821

ABSTRACT

In order to better understand the influence of age on innate immune function in horses, blood was collected from twelve adult horses (aged 10-16 years; mean: 13 years) and ten geriatric horses (aged 18-26 years; mean: 21.7 years) for analysis of plasma myeloperoxidase, complete blood counts, and cytokine and receptor expression in response to in vitro stimulation with heat-inactivated Rhodococcus equi, heat-inactivated Escherichia coli, and PMA/ionomycin. Gene expression was measured using RT-PCR for IFNγ, IL-1ß, IL-6, IL-8, IL-10, IL-12α, IL-13, IL-17α, TLR2, TLR4, and TNFα. Endocrine function and body weight were measured to assess any potential impacts of ACTH, insulin, or body weight on immune function; none of the horses had pituitary pars intermedia dysfunction. The geriatric horse group had lower concentrations of plasma myeloperoxidase (P = 0.0459) and lower absolute monocyte counts (P = 0.0477); however, the difference in monocyte counts was no longer significant after outliers were removed. Additionally, only two significant differences in cytokine/receptor expression in whole blood were observed. Compared with adult horses, the geriatric horses had increased TNFα expression after in vitro stimulation with heat-inactivated R. equi (P = 0.0224) and had decreased IL-17α expression after PMA/ionomycin stimulation when one outlier was excluded (P = 0.0334). These changes may represent a compensatory mechanism by which geriatric horses could ensure adequate immune responses despite potentially dysfunctional neutrophil activity and/or decreased monocyte counts. Aging may influence equine innate immune function, and additional research is warranted to confirm and further explore these findings.


Subject(s)
Aging , Blood Cells/immunology , Cytokines/immunology , Horses/immunology , Immunity, Innate , Age Factors , Aging/immunology , Animals , Blood Cells/physiology , Cytokines/genetics , Escherichia coli/immunology , Gene Expression , RNA, Messenger/genetics , Rhodococcus equi/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...