Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 18125, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872247

ABSTRACT

Polyploid cells contain more than two copies of each chromosome. Polyploidy has important roles in development, evolution, and tissue regeneration/repair, and can arise as a programmed polyploidization event or be triggered by stress. Cancer cells are often polyploid. C. elegans nematodes are typically diploid, but stressors such as heat shock and starvation can trigger the production of tetraploid offspring. In this study, we utilized a recently published protocol to generate stable tetraploid strains of C. elegans and compared their physiological traits and sensitivity to two DNA-damaging chemotherapeutic drugs, cisplatin and doxorubicin. As prior studies have shown, tetraploid worms are approximately 30% longer, shorter-lived, and have a smaller brood size than diploids. We investigated the reproductive defect further, determining that tetraploid worms have a shorter overall germline length, a higher rate of germ cell apoptosis, more aneuploidy in oocytes and offspring, and larger oocytes and embryos. We also found that tetraploid worms are modestly protected from growth delay from the chemotherapeutics but are similarly or more sensitive to reproductive toxicity. Transcriptomic analysis revealed differentially expressed pathways that may contribute to sensitivity to stress. This study reveals phenotypic consequences of whole-animal tetraploidy that make C. elegans an excellent model for ploidy differences.


Subject(s)
Caenorhabditis elegans , Tetraploidy , Animals , Caenorhabditis elegans/genetics , Ploidies , Polyploidy , Diploidy
3.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333126

ABSTRACT

Polyploid cells contain more than two copies of each chromosome. Polyploidy has important roles in development, evolution, and tissue regeneration/repair, and can arise as a programmed polyploidization event or be triggered by stress. Cancer cells are often polyploid. C. elegans nematodes are typically diploid, but stressors such as heat shock and starvation can trigger the production of tetraploid offspring. In this study, we utilized a recently published protocol to generate stable tetraploid strains of C. elegans and compared their physiological traits and sensitivity to two DNA-damaging chemotherapeutic drugs, cisplatin and doxorubicin. As prior studies have shown, tetraploid worms are approximately 30% longer, shorter-lived, and have a smaller brood size than diploids. We investigated the reproductive defect further, determining that tetraploid worms have a shorter overall germline length, a higher rate of germ cell apoptosis, more aneuploidy in oocytes and offspring, and larger oocytes and embryos. We also found that tetraploid worms are modestly protected from growth delay from the chemotherapeutics but are similarly or more sensitive to reproductive toxicity. Transcriptomic analysis revealed differentially expressed pathways that may contribute to sensitivity to stress. Overall, this study reveals the phenotypic consequences of whole-animal tetraploidy in C. elegans.

4.
Elife ; 112022 09 12.
Article in English | MEDLINE | ID: mdl-36094368

ABSTRACT

The Caenorhabditis elegans adult hermaphrodite germline is surrounded by a thin tube formed by somatic sheath cells that support germ cells as they mature from the stem-like mitotic state through meiosis, gametogenesis, and ovulation. Recently, we discovered that the distal Sh1 sheath cells associate with mitotic germ cells as they exit the niche Gordon et al., 2020. Here, we report that these sheath-associated germ cells differentiate first in animals with temperature-sensitive mutations affecting germ cell state, and stem-like germ cells are maintained distal to the Sh1 boundary. We analyze several markers of the distal sheath, which is best visualized with endogenously tagged membrane proteins, as overexpressed fluorescent proteins fail to localize to distal membrane processes and can cause gonad morphology defects. However, such reagents with highly variable expression can be used to determine the relative positions of the two Sh1 cells, one of which often extends further distal than the other.


Subject(s)
Caenorhabditis elegans Proteins , Neuroblastoma , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Female , Gonads/metabolism , Meiosis
5.
Elife ; 92020 07 21.
Article in English | MEDLINE | ID: mdl-32692313

ABSTRACT

Stem cells reside in and rely upon their niche to maintain stemness but must balance self-renewal with the production of daughters that leave the niche to differentiate. We discovered a mechanism of stem cell niche exit in the canonical C. elegans distal tip cell (DTC) germ stem cell niche mediated by previously unobserved, thin, membranous protrusions of the adjacent somatic gonad cell pair (Sh1). A disproportionate number of germ cell divisions were observed at the DTC-Sh1 interface. Stem-like and differentiating cell fates segregated across this boundary. Spindles polarized, pairs of daughter cells oriented between the DTC and Sh1, and Sh1 grew over the Sh1-facing daughter. Impeding Sh1 growth by RNAi to cofilin and Arp2/3 perturbed the DTC-Sh1 interface, reduced germ cell proliferation, and shifted a differentiation marker. Because Sh1 membrane protrusions eluded detection for decades, it is possible that similar structures actively regulate niche exit in other systems.


Stem cells have the rare ability to divide and specialize into the many different types of cells necessary for an organism to survive. For instance, germ stem cells can multiply to produce precursor cells that go on to become eggs or sperm needed for reproduction. When a stem cell divides, the daughter cells can either remain 'naïve', or start to specialize into a given cell type. In many cases, this decision is strongly influenced by the properties of the environment that surrounds the stem cell. However, in the microscopic worm Caenorhabditis elegans, how the daughters of germ stem cells specialize was thought to be a random process, with nearby cells equally likely to specialize or remain naïve. In this animal, germ stem cells reside in tube-shaped structures called gonads, which are enclosed by a large 'distal tip' cell. In addition, cells known as Sh1 surround the gonad. Here, Gordon et al. tracked dividing germ stem cells in the gonads of live worms. This revealed that both the distal tip cell and Sh1 cells have finger-like extensions that form contacts with the germ stem cells. The fate of dividing germ stem cells is shaped by these interactions. If they touch only the distal tip cell, they remain in a naïve state. However, if they contact both the distal tip cell and an Sh1 cell, one daughter of the stem cell becomes an egg precursor ­ with the daughter closest to the distal tip cell staying naïve. In fact, germ stem cells that are prevented from contacting Sh1 cells divide less often. Many other types of stem cells, for example in human skin, are believed to make the decision to remain naïve or undergo specialization randomly. The results from Gordon et al. could provide a roadmap to discover hidden layers of control in other organisms, some of which may be potentially relevant in health and disease.


Subject(s)
Caenorhabditis elegans/cytology , Stem Cell Niche/physiology , Stem Cells , Actin Depolymerizing Factors/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Animals , Cell Differentiation , Germ Cells/cytology , Germ Cells/metabolism , RNA Interference , Stem Cells/cytology , Stem Cells/metabolism
6.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G314-G326, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28104585

ABSTRACT

Alcoholism causes an imbalance of endoplasmic reticulum (ER) homeostasis in pancreatic acini. In those cells, the ER is involved in the synthesis and folding of pancreatic enzymes. Ubiquitin-fold modifier 1 (Ufm1) is part of a novel ubiquitin-like modification system involved in maintaining ER homeostasis. Among the components of the Ufm1 system, Regulator of C53 and DDRGK1 (RCAD) has recently been identified as a Ufm1-specific E3 ligase that promotes ufmylation of DDRGK1, an RCAD-interacting protein. We determined the importance of RCAD in the proper synthesis and secretion of pancreatic enzymes using mice with genetically deleted RCAD. The pancreas of RCAD-deficient mice was of normal size and histology. Using quantitative PCR and Western blotting, we found that amylase was upregulated in pancreas organs from RCAD-knockout (KO) mice. Constitutive amylase secretion was much higher in isolated pancreatic acini from RCAD KO mice, whereas CCK-stimulated amylase secretion was disturbed. RCAD deficiency caused a downregulation in expression of ER chaperone BiP, which affected ER homeostasis and activated both apoptosis and trypsin. We also found that both RCAD and DDRGK1 transcript levels were upregulated in pancreatic acini from alcohol-preferring rats. Elevated expression of RCAD and DDRGK1 was associated with increased ER stress and UPR activation. Because of the lack of BiP expression, caspase 3 and trypsin activation we enhanced in RCAD-deficient pancreatic acini upon treatment with ethanol and CCK. In conclusion, the RCAD/BiP pathway is required for proper synthesis and secretion of pancreatic enzymes. In alcoholism, increased levels of components of the Ufm1 system could prevent the deleterious effects of alcohol in the pancreas by regulating BiP levels.NEW & NOTEWORTHY RCAD/BiP pathway is required for the proper synthesis and secretion of amylase from pancreatic acini, as well as for the maintenance of the ER homeostasis. In alcoholism, the exocrine pancreas could increase the levels of components of the Ufm1 system to protect itself from alcohol's deleterious effects by regulating the expression of ER chaperone BiP.


Subject(s)
Acinar Cells/metabolism , Amylases/metabolism , Cadherins/metabolism , Heat-Shock Proteins/metabolism , Pancreas, Exocrine/metabolism , Signal Transduction/physiology , Alcoholism/metabolism , Animals , Apoptosis/physiology , Cadherins/genetics , Caspase 3/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/genetics , Homeostasis/physiology , Mice , Mice, Knockout , Trypsin/metabolism , Up-Regulation
7.
Prog Community Health Partnersh ; 7(4): 419-27, 2013.
Article in English | MEDLINE | ID: mdl-24375183

ABSTRACT

This paper discusses the historical context and current challenges of obesity prevention and control initiatives in Texas to understand how the obesity epidemic has been addressed by multiple interacting stakeholders over the past decade. By reviewing state reports and interviewing key decision makers, this paper chronicles recent efforts in Texas by highlighting health policy initiatives and champions who helped to create the foundation for obesity prevention and control. The findings outline the sentinel policy approaches that were implemented by public/private sector partnerships over the last decade, as well as the public figures that have been singular champions in creating the momentum for these changes. The efforts to address obesity with a collaborative approach in Texas have shown initial promise in creating a tipping point to control the obesity epidemic. These strategies can also serve as a model for obesity prevention and control at the national level.


Subject(s)
Community-Based Participatory Research , Health Policy , Health Promotion/organization & administration , Obesity/prevention & control , Humans , Obesity/epidemiology , Texas/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...