Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 193: 115217, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37437476

ABSTRACT

We evaluated acute turbidity effects on a threatened coral species (Orbicella faveolata) under three short-term challenge scenarios using a Port of Miami sediment homogenate to simulate turbid conditions during dredging. For these experiments we designed a simple coral challenge test system that kept turbidity stable, without adverse effects to the coral. A 96-h coral challenge experiment demonstrated that low turbidity levels (≥4 NTU) have negative effects on O. faveolata tissue regeneration. A 48-h turbidity exposure (maximum 30 NTU) had no effect on O. faveolata tissue regeneration, showing that short term turbidity exposures may not be detrimental to coral health. In a 13-day test, treated coral fragments (maximum 30 NTU) exhibited significant delays in tissue regeneration, but recovery was observed after approximately one week. The results presented here can be used to inform management decisions for proposed dredging activities proximal to coral reef habitats.


Subject(s)
Anthozoa , Animals , Coral Reefs , Ecosystem , Endangered Species
2.
PLoS One ; 17(12): e0278695, 2022.
Article in English | MEDLINE | ID: mdl-36472988

ABSTRACT

The sea urchin embryo development toxicity test was used to investigate toxicity of the benthic substrate in Biscayne National Park (BISC). Twenty-five sites were selected based upon a high potential for anthropogenic stressor input (e. g., hydrocarbons, personal care products, nutrients, etc.) or proximity to coral reef habitats. We found that sediment interstitial water (porewater) was toxic to urchin embryos at 22 of 25 sites. Healthy sites included two coral reefs (Anniversary Reef and Marker 14 Reef) and Turkey Point Channel. Discrete areas of BISC have highly toxic sediments and the presence of sediment contaminants could negatively impact reproduction, growth and population density of benthic invertebrates, such as corals. Results of the sea urchin embryo development toxicity test can be used as a baseline assessment for monitoring improvements or degradation in ecosystem health and could be a valuable tool to investigate the suitability of degraded habitats for future reef restoration. Since the last comprehensive environmental assessment of BISC was performed in 1999, further investigation into the sources of toxicity at BISC is needed.


Subject(s)
Lytechinus , Parks, Recreational , Animals , Ecosystem , Health Status , Turkey
3.
Aquat Toxicol ; 222: 105454, 2020 May.
Article in English | MEDLINE | ID: mdl-32179335

ABSTRACT

Recent oil spill responses such as the Deepwater Horizon event have underscored the need for crude oil ecotoxicological threshold data for shallow water corals to assist in natural resource damage assessments. We determined the toxicity of a mechanically agitated oil-seawater mixture (high-energy water-accommodated fraction, HEWAF) of a sweet crude oil on a branched stony coral, Pocillopora damicornis. We report the results of two experiments: a 96 h static renewal exposure experiment and a "pulse-chase" experiment of three short-term exposure durations followed by a recovery period in artificial seawater. Five endpoints were used to determine ecotoxicological values: 1) algal symbiont chlorophyll fluorescence, 2) a tissue regeneration assay and a visual health metric with three endpoints: 3) tissue integrity, 4) tissue color, and 5) polyp behavior. The sum of 50 entrained polycyclic aromatic hydrocarbons (tPAH50) was used as a proxy for oil exposure. For the 96 h exposure dose response experiment, dark-adapted maximum quantum yield (Fv/Fm) of the dinoflagellate symbionts was least affected by crude oil (EC50 = 913 µg/L tPAH50); light-adapted effective quantum yield (EQY) was more sensitive (EC50 =  428 µg/L tPAH50). In the health assessment, polyp behavior (EC50 = 27 µg/L tPAH50) was more sensitive than tissue integrity (EC50 = 806 µg/L tPAH50) or tissue color (EC50 = 926 µg/L tPAH50). Tissue regeneration proved to be a particularly sensitive measurement for toxicity effects (EC50 = 10 µg/L tPAH50). Short duration (6-24 h) exposures using 503 µg/L tPAH50 (average concentration) resulted in negative impacts to P. damicornis and its symbionts. Recovery of chlorophyll a fluorescence levels for 6-24 h oil exposures was observed in a few hours (Fv/Fm) to several days (EQY) following recovery in fresh seawater. The coral health assessments for tissue integrity and tissue color were not affected following short-term oil exposure durations, but the 96 h treatment duration resulted in significant decreases for both. A reduction in polyp behavior (extension) was observed for all treatment durations, with recovery observed for the short-term (6-24 h) exposures within 1-2 days following placement in fresh seawater. Wounded and intact fragments exposed to oil treatments were particularly sensitive, with significant delays observed in tissue regeneration. Estimating ecotoxicological values for P. damicornis exposed to crude oil HEWAFs provides a basis for natural resource damage assessments for oil spills in reef ecosystems. These data, when combined with ecotoxicological values for other coral reef species, will contribute to the development of species sensitivity models.


Subject(s)
Anthozoa/drug effects , Biological Monitoring/methods , Coral Reefs , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anthozoa/growth & development , Anthozoa/metabolism , Chlorophyll A/metabolism , Dinoflagellida/drug effects , Dinoflagellida/growth & development , Ecosystem , Louisiana , Petroleum Pollution/analysis , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...