Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4749, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35963858

ABSTRACT

Dynamic remodeling of the actin cytoskeleton is essential for many cellular processes. Tracking the movement of individual actin filaments can in principle shed light on how this complex behavior arises at the molecular level. However, the information that can be extracted from these measurements is often limited by low signal-to-noise ratios. We developed a Bayesian statistical approach to estimate true, underlying velocity distributions from the tracks of individual actin-associated fluorophores with quantified localization uncertainties. We found that the motion of filamentous (F)-actin in fibroblasts and endothelial cells was better described by a statistical jump process than by models in which filaments undergo continuous, diffusive movement. In particular, a model with exponentially distributed jump length- and time-scales recapitulated actin filament velocity distributions measured for the cell cortex, integrin-based adhesions, and stress fibers, suggesting that a common physical model can potentially describe actin filament dynamics in a variety of cellular contexts.


Subject(s)
Actins , Endothelial Cells , Actin Cytoskeleton/metabolism , Actins/metabolism , Bayes Theorem , Cytoskeleton/metabolism , Endothelial Cells/metabolism
2.
Sci Adv ; 6(20): eaax0317, 2020 05.
Article in English | MEDLINE | ID: mdl-32440534

ABSTRACT

Integrin-based adhesion complexes link the cytoskeleton to the extracellular matrix (ECM) and are central to the construction of multicellular animal tissues. How biological function emerges from the tens to thousands of proteins present within a single adhesion complex remains unclear. We used fluorescent molecular tension sensors to visualize force transmission by individual integrins in living cells. These measurements revealed an underlying functional modularity in which integrin class controlled adhesion size and ECM ligand specificity, while the number and type of connections between integrins and F-actin determined the force per individual integrin. In addition, we found that most integrins existed in a state of near-mechanical equilibrium, a result not predicted by existing models of cytoskeletal force transduction. A revised model that includes reversible cross-links within the F-actin network can account for this result and suggests one means by which cellular mechanical homeostasis can arise at the molecular level.

3.
Biophys J ; 111(1): 28-37, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27410731

ABSTRACT

Unlike dilute experimental conditions under which biological molecules are typically characterized, the cell interior is crowded by macromolecules, which affects both the thermodynamics and kinetics of in vivo processes. Although the excluded-volume effects of macromolecular crowding are expected to cause compaction of unfolded and disordered proteins, the extent of this effect is uncertain. We use a coarse-grained model to represent proteins with varying sequence content and directly observe changes in chain dimensions in the presence of purely repulsive spherical crowders. We find that the extent of crowding-induced compaction is dependent not only on crowder size and concentration, but also on the properties of the protein itself. In fact, we observe a nonmonotonic trend between the dimensions of the polypeptide chain in bulk and the degree of compaction: the most extended chains experience up to 24% compaction, the most compact chains show virtually no change, and intermediate chains compress by up to 40% in size at a 40% crowder volume fraction. Free-volume theory combined with an impenetrable ellipsoidal representation of the chains predicts the crowding effects only for collapsed protein chains. An additional scaling factor, which can be easily computed from protein-crowder potential of mean force, corrects for the penetrability of extended chains and is sufficient to capture the observed nonmonotonic trend in compaction.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Models, Molecular , Protein Conformation
4.
J Chem Theory Comput ; 11(6): 2776-82, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26575570

ABSTRACT

Intrinsically disordered proteins (IDPs), which are expected to be largely unstructured under physiological conditions, make up a large fraction of eukaryotic proteins. Molecular dynamics simulations have been utilized to probe structural characteristics of these proteins, which are not always easily accessible to experiments. However, exploration of the conformational space by brute force molecular dynamics simulations is often limited by short time scales. Present literature provides a number of enhanced sampling methods to explore protein conformational space in molecular simulations more efficiently. In this work, we present a comparison of two enhanced sampling methods: temperature replica exchange molecular dynamics and bias exchange metadynamics. By investigating both the free energy landscape as a function of pertinent order parameters and the per-residue secondary structures of an IDP, namely, human islet amyloid polypeptide, we found that the two methods yield similar results as expected. We also highlight the practical difference between the two methods by describing the path that we followed to obtain both sets of data.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Molecular Dynamics Simulation , Temperature , Humans
5.
J Phys Chem B ; 118(46): 13169-74, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25347282

ABSTRACT

The cholesterol recognition/interaction amino acid consensus (CRAC) motif is a primary structure pattern used to identify regions that may be responsible for preferential cholesterol binding in many proteins. The leukotoxin LtxA, which is produced by a pathogenic bacterium, contains two CRAC seqences, only one of which is responsible for cholesterol binding, and the binding is required for cytotoxicity. The factors, in addition to the CRAC definition, that may be responsible for cholesterol-binding functionality and atomistic interactions between the CRAC region and cholesterol are as yet unknown. This study uses molecular dynamics simulations to identify structural characteristics and specific interactions of the two LtxA CRAC peptides with both pure phospholipid and binary cholesterol-phospholipid bilayers. We have identified changes in the secondary structure of these peptides that occur upon cholesterol binding, which are not seen when it is associated with a cholesterol-devoid membrane, and which show salient coupling of structural disorder and function. Additionally, the central tyrosine residue of the CRAC motif was found to play a significant role in cholesterol binding, though residues outside of the CRAC motif also influence membrane interactions and functionality of the CRAC region.


Subject(s)
Cholesterol/metabolism , Molecular Dynamics Simulation , Peptides/metabolism , Amino Acid Sequence , Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Peptides/chemistry , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...