Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 40(12): 3337-3350, 2021 12.
Article in English | MEDLINE | ID: mdl-34506650

ABSTRACT

Information on the effects of silver nanoparticles (AgNPs) in fish has mostly been generated from standard laboratory species and short-term toxicity tests. However, there is significant uncertainty regarding AgNP toxicity to native species of concern in North America, particularly in northern freshwater ecosystems. We assessed the chronic toxicity of AgNPs in early life stages of three North American fish species: rainbow trout (Oncorhynchus mykiss), lake trout (Salvelinus namaycush), and northern pike (Esox lucius). Newly fertilized embryos were exposed to nominal aqueous concentrations of 0.1, 0.3, 1.0, 3.0, 10.0, or 30.0 nM AgNPs for 126 (rainbow trout), 210 (lake trout), and 25 (northern pike) days. Endpoints included cumulative developmental time (°C × day or degree-days to 50% life-stage transition), mortality, fork length, embryonic malformations, cumulative survival, and histopathology of gill and liver in larvae/alevins. The results showed life stage-specific differences in responses, with endpoints during the embryonic stage occurring more often and at lower concentrations compared to larval/alevin and juvenile stages. Sensitivities among species were highly dependent on the endpoints measured, although developmental time appeared to be the most consistent endpoint across species. At embryonic and larval/alevin stages, northern pike was the most sensitive species (lowest observable effect concentration of 0.1 nM using developmental time). Rainbow trout displayed similar responses to lake trout across multiple endpoints and therefore seems to be an adequate surrogate for trout species in ecotoxicology studies. Moreover, while mortality during individual life stages was not generally affected, the cumulative mortality across life stages was significantly affected, which highlights the importance of chronic, multi-life-stage studies. Environ Toxicol Chem 2021;40:3337-3350. © 2021 SETAC.


Subject(s)
Metal Nanoparticles , Oncorhynchus mykiss , Water Pollutants, Chemical , Animals , Canada , Ecosystem , Metal Nanoparticles/toxicity , Oncorhynchus mykiss/physiology , Silver/toxicity , Water Pollutants, Chemical/toxicity
2.
Clin Chem ; 50(11): 2019-27, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15319316

ABSTRACT

BACKGROUND: All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. METHODS: MultiCode PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in approximately 3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from >400 newborns. RESULTS: In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. CONCLUSIONS: The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.


Subject(s)
DNA Mutational Analysis/methods , Neonatal Screening/methods , Polymerase Chain Reaction/methods , Autoanalysis , Cystic Fibrosis/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Infant, Newborn , Mutation , Prospective Studies , Retrospective Studies , Robotics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...