Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 504: 404-416, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28595151

ABSTRACT

Chemical flooding with surfactants for reducing oil-brine interfacial tensions (IFTs) to mobilize residual oil trapped by capillary forces has a great potential for Enhanced Oil Recovery (EOR). Surface-active ionic liquids (SAILs) constitute a class of surfactants that has recently been proposed for this application. For the first time, SAILs or their blends with an anionic surfactant are studied by determining equilibrium phase behavior for systems of about unit water-oil ratio at various temperatures. The test fluids were model alkane and aromatic oils, NaCl brine, and synthetic hard seawater (SW). Patterns of microemulsions observed are those of classical phase behavior (Winsor I-III-II transition) known to correlate with low IFTs. The two anionic room-temperature SAILs tested were made from common anionic surfactants by substituting imidazolium or phosphonium cations for sodium. These two anionic and two cationic SAILs were found to have little potential for EOR when tested individually. Thus, also tested were blends of an anionic internal olefin sulfonate (IOS) surfactant with one of the anionic SAILs and both cationic SAILs. Most promising for EOR was the anionic/cationic surfactant blend of IOS with [C12mim]Br in SW. A low equilibrium IFT of ∼2·10-3mN/m was measured between n-octane and an aqueous solution having the optimal blend ratio for this system at 25°C.

2.
J Chem Phys ; 146(12): 124705, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388160

ABSTRACT

Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactantproperties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion.

3.
J Colloid Interface Sci ; 385(1): 111-21, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22892335

ABSTRACT

Nanoemulsions were formed spontaneously by diluting water-in-oil (W/O) or brine-in-oil (B/O) microemulsions of a hydrocarbon (octane), anionic surfactant (Aerosol-OT or AOT) and water or NaCl brine in varying levels of excess brine. The water-continuous nanoemulsions were characterized by interfacial tension, dynamic light scattering, electrophoresis, optical microscopy and phase-behavior studies. The mechanism of emulsification was local supersaturation and resulting nucleation of oil during inversion. For nanoemulsions formed at low salinities with Winsor I phase behavior, octane drops grew from initial diameters of 150-250 nm to 480-1000 nm over 24h, depending on salinity. Growth was caused by mass transfer but seemed to approach the asymptotic stage of Ostwald ripening described by the Lifshitz-Slyozov-Wagner (LSW) theory only for dilution with salt-free water. Near the higher cross-over salinity (Winsor III), the nanoemulsions showed much slower growth with droplet size consistently remaining below 200 nm over 24h and reaching 250 nm after 1 week. Birefringence indicated the presence of liquid crystal for these conditions, which could have contributed to the slow growth rate. At even higher salinity levels in the Winsor II domain, W/O/W multiple emulsions having drops greater than 1 µm in diameter were consistently recorded for the first 5-7h, after which size decreased to values below 1 µm. The number and size of internal water droplets in multiple emulsion drops was found to decrease over time, suggesting coalescence of internal droplets with the continuous water phase and mass transfer of water from internal droplets to continuous phase as possible mechanisms of the observed drop shrinkage. Electrophoresis studies showed the nanoemulsions to be highly negatively charged (zeta potentials of -60 mV to -120 mV). The high charge on octane droplets helped assure stability to flocculation and coalescence, thereby allowing mass transfer to control growth in the Winsor I and III regions.

4.
J Colloid Interface Sci ; 325(2): 508-15, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18597762

ABSTRACT

Increasing triolein content of oil-in-water microemulsions in the pure C(12)E(4)/water/n-hexadecane/triolein system while maintaining a fixed surfactant concentration and volume fraction of drops raises the temperature of the solubilisation boundary, where excess oil separates, but has only a slight effect on the (higher) cloud point temperature, where excess water appears. Thus, the temperature range of the single-phase microemulsion shrinks and ultimately disappears. When such microemulsions are in equilibrium with excess oil, the hexadecane/triolein ratio is greater in the microemulsion, probably because the larger triolein molecules are unable to penetrate the hydrocarbon chain region of the surfactant films of the microemulsion droplets. Indeed, monolayer studies and calculations based on microemulsion and excess oil compositions indicate that the films have minimal triolein and similar ratios of hexadecane to surfactant. Triolein drops brought into contact with hexadecane-in-water microemulsions first swell as they incorporate hexadecane, then shrink owing to solubilisation. Interfacial tension decreases during this process until it becomes almost constant near 0.01 mN m(-1), suggesting that the drops in the final stages of solubilisation have high hexadecane contents. A microemulsion containing 10 wt% C(12)E(4) and 15 wt% hexadecane was able to remove over 50% of triolein from polyester fabric at 25 degrees C, more than twice that removed by an oil-free solution with the same surfactant concentration in similar experiments.

5.
Adv Colloid Interface Sci ; 123-126: 241-57, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-16860285

ABSTRACT

Information on solubilization rates of oils in aqueous micellar solutions is reviewed. For ionic surfactants electrostatic repulsion prevents close approach of micelles to the oil-water interface, so that solubilization results from oil molecules dissolving individually in the solution and being taken up by micelles during and/or after transport across a diffusion boundary layer to the bulk solution. Experiments with SDS solutions and single oil drops having low (but not negligible) solubility indicate that mass transfer is often not rate-controlling. Instead phenomena near the oil-water interface including, but not limited to, the rates of micellar uptake of oil from the aqueous solution seem to control the solubilization rate. In contrast, Ostwald ripening experiments involving multiple oil drops in SDS solutions are often interpreted in terms of molecular dissolution and diffusion alone since ripening rates are typically only slightly different from those observed in the absence of surfactant micelles, where this mechanism is considered to hold. For many nonionic surfactant systems and oils of low or negligible solubility the principal mechanism of solubilization is incorporation of surfactant at the oil-water interface from micelles, which coalesce or "adsorb" at the interface or else dissociate nearby, permitting individual surfactant molecules to be adsorbed. Subsequently the excess surfactant is emitted as oil-containing micelles. Most experiments have indicated that this process, which appears in the analyses as an interfacial resistance, is rate controlling. New results are presented here supporting this model and showing that resistance to mass transfer is often quite low because natural convection can arise near an oil drop owing to the density change produced by solubilized oil in micelles near the drop surface. Provided that polydispersity of drop sizes is properly accounted for, experiments on solubilization and compositional ripening in emulsions stabilized with nonionic surfactants can be interpreted using the interfacial resistance model with values of resistance obtained from single-drop experiments. However, it is unclear whether mass transfer, interfacial resistance or perhaps some combined mechanism controls the rate of Ostwald ripening. One uncertainty limiting predictions of the interfacial resistance model is the lack of information on the oil-to-surfactant ratio in micelles when the concentration of individually dissolved oil molecules slightly exceeds the equilibrium value for a plane oil-water interface, the situation during Ostwald ripening.

6.
J Colloid Interface Sci ; 279(2): 539-47, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15464822

ABSTRACT

The effect of calcium oleate on foam stability was studied for aqueous solutions of two commonly used surfactants (anionic and nonionic) under alkaline conditions in the absence of oil. For the anionic surfactant, defoaming by calcium oleate appears to involve two mechanisms. One is that oleate and calcium ions are presumably incorporated into the surfactant monolayers with a resulting decrease in the maximum of the disjoining pressure curve and therefore produces less stable thin films. The other is bridging of the films by calcium oleate particles. The latter mechanism was especially important in freshly made solutions where precipitation in the aqueous phase was still occurring when the foam was generated. Foams generated after aging (hours) when precipitation was nearly complete were more stable even though solution turbidities were greater. Foams of the nonionic surfactant were less stable than those of the anionic surfactant but were also destabilized by sufficient amounts of calcium oleate and exhibited a similar aging effect. A simplified model was developed for estimating the sodium oleate concentration at which precipitation commences in solutions of the anionic surfactant containing dissolved calcium. It includes enhancement of calcium content in the electrical double layers of the surfactant micelles. Predictions of the model were in agreement with experiment.


Subject(s)
Antifoaming Agents/chemistry , Calcium/chemistry , Soaps/chemistry , Aging , Micelles , Oleic Acids/chemistry , Solutions/chemistry , Surface Properties , Surface-Active Agents/chemistry , Time Factors , Water/chemistry
7.
J Colloid Interface Sci ; 263(2): 633-44, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12909057

ABSTRACT

The effect of oils, hardness, and calcium soap on foam stability of aqueous solutions of commercial surfactants was investigated. For conditions where negligible calcium soap was formed, stability of foams made with 0.1 wt% solutions of a seven-EO alcohol ethoxylate containing dispersed drops of n-hexadecane, triolein, or mixtures of these oils with small amounts of oleic acid could be understood in terms of entry, spreading, and bridging coefficients, i.e., ESB analysis. However, foams made from solutions containing 0.01 wt% of three-EO alcohol ethoxysulfate sodium salt and the same dispersed oils were frequently more stable than expected based on ESB analysis, reflecting that repulsion due to overlap of electrical double layers in the asymmetric oil-water-air film made oil entry into the air-water interface more difficult than the theory predicts. When calcium soap was formed in situ by the reaction of fatty acids in the oil with calcium, solid soap particles were observed at the surfaces of the oil drops. The combination of oil and calcium soap produced a synergistic effect facilitating the well-known bridging instability of foam films or Plateau borders and producing a substantial defoaming effect. A possible mechanism of instability involving increases in disjoining pressure at locations where small soap particles approach the air-water interface is discussed. For both surfactants with the triolein-oleic acid mixtures, calculated entry and bridging coefficients for conditions when calcium soap formed were positive shortly after foam generation but negative at equilibrium. These results are consistent with the experimental observation that most defoaming action occurred shortly after foam generation rather than at later times.

8.
J Colloid Interface Sci ; 237(2): 259-266, 2001 May 15.
Article in English | MEDLINE | ID: mdl-11334541

ABSTRACT

Spontaneous emulsification of small oil droplets was produced in three different systems by chemical reactions which converted lipophilic surfactants initially dissolved in the oil phase to hydrophilic surfactants. The resulting reversal of spontaneous curvature from a water-in-oil to an oil-in-water configuration reduced the solubilization capacity for oil to such an extent that supersaturation occurred, leading to nucleation of oil droplets. In one case a dilute solution of phenylboronic acid in water diffused into an oil phase containing a monoglyceride. The reaction converted the monoglyceride to an anionic surfactant. In another case a dilute aqueous solution of the sodium salt of EDTA diffused into an oil phase containing a calcium sulfonate surfactant. The EDTA complexed calcium ions, releasing sodium ions which formed the more hydrophilic sodium salt of the sulfonate. Finally, an enzyme was used to split a double-chain phospholipid into a lysolecithin and a fatty acid. Copyright 2001 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...