Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Med Vet Entomol ; 29(1): 82-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25557192

ABSTRACT

Stable flies (Stomoxys calcitrans [Diptera: Muscidae] L.) are blood-feeding synanthropic pests, which cause significant economic losses in livestock. Stable fly antennae contain olfactory sensilla responsive to host and host environment-associated odours. Field observation indicated that the abundance of stable flies increased significantly in grasslands or crop fields when cattle manure slurry was applied. Major volatile compounds emanating from manure slurry were collected and identified. Behavioural responses of stable flies to those compounds were investigated in laboratory bioassays and field-trapping studies. Results from olfactometer assays revealed that phenol, p-cresol and m-cresol were attractive to adult stable flies. When tested individually, attraction was higher with lower dosages. Stable flies were most attracted to blends of phenol and m-cresol or p-cresol. Traps with binary blend lures caught more stable flies in field trials as well.


Subject(s)
Chemotaxis , Insect Control/methods , Muscidae/physiology , Odorants/analysis , Animals , Cattle , Female , Male , Manure/analysis , Olfactometry
2.
J Anim Sci ; 86(12): 3617-27, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18676716

ABSTRACT

Corn ethanol production removes starch and concentrates the remaining nutrients, including CP and minerals. When wet distillers grains with solubles (WDGS) are fed to cattle in place of corn, CP and minerals often exceed dietary needs. This may increase N emission, P run-off, and odor production. These variables are evaluated in this study. Crossbred steers (n = 160; 434 +/- 8 kg) were assigned in a completely randomized block design to 9 x 9 m pens with concrete floor (10 animals/pen; 4 pens/treatment). Steers were fed a finishing diet that contained 0, 20, 40, or 60% WDGS on a DM basis, and provided 13.3, 15.5, 20.6, or 24.9% CP, respectively. Two kilograms of manure slurry (14 to 23% DM) were collected from each pen monthly (Aug. 20, Sep. 24, and Oct. 22). Samples were analyzed immediately for odorants, DM, pH, NH(3), total alcohol, l-lactate, and concentrations of generic Escherichia coli. After incubation of the samples at 22 degrees C for 2, 4, 7, 10, 15, 21, and 28 d, samples were analyzed for methane production in addition to the above characteristics. Before incubation, NH(3), H(2)S, indole, phenol, isovalerate, isobutyrate, and acetate increased (P < 0.01) with increasing amounts of WDGS in the diet. Other odorants, including skatole, caproate, valerate, butyrate, and propionate, were greater (P < 0.01) in manure slurries from cattle fed 20 or 40% WDGS, compared to 0% WDGS. The l-lactate was greater (P < 0.01) in slurries from cattle fed 0% WDGS (447 mu mol/g of DM) compared with the other treatment slurries (14 to 15 mu mol/g of DM). After incubation, l-lactate contributed to lowered slurry pH (6.3, 7.1, 7.6, and 8.2, respectively, for 0, 20, 40, and 60% WDGS), which inhibited microbial fermentation, E. coli persistence, and methane production. Because of the favorable, more neutral pH in the 40 and 60% WDGS slurries, many of the odorant compounds were rapidly converted to methane during a 28-d static incubation. Escherichia coli O157:H7 inoculated into subsamples of the manure slurries exhibited behavior similar to that of naturally present generic E. coli, surviving in greater numbers longer (P < 0.05) in 20 and 40% WDGS slurries than in 0% WDGS. These data indicate feeding WDGS can increase odorants in manure slurries and extend the persistence of E. coli.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Edible Grain , Escherichia coli/physiology , Manure/microbiology , Odorants , Animals , Cattle , Colony Count, Microbial , Diet/veterinary , Escherichia coli/isolation & purification , Fatty Acids, Volatile/analysis , Male , Manure/analysis
3.
J Anim Sci ; 85(6): 1487-95, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17264234

ABSTRACT

We hypothesized that oscillation of the dietary CP concentration, which may improve N retention of finishing beef steers, would reduce production of manure odor compounds and total N inputs while yielding comparable performance. Charolais-sired steers (n = 144; 303 +/- 5 kg of initial BW) were used in a completely randomized block design (6 pens/treatment). The steers were fed to 567 kg of BW on the following finishing diets, which were based on dry-rolled corn: 1) low (9.1% CP), 2) medium (11.8% CP), 3) high (14.9% CP), or 4) low and high oscillated on a 48-h interval for each feed (oscillating). Steers fed low tended (P = 0.08) to have less DMI (7.80 kg/d) than steers fed medium (8.60 kg/d) or oscillating (8.67 kg/d), but not less than steers fed high (8.12 kg/d). Daily N intake was greatest (P < 0.01) for steers fed high (189 g), intermediate for medium (160 g) and oscillating (164 g), and least for low (113 g). The ADG was lower (P < 0.01) for steers fed low (1.03 kg) than for those fed medium (1.45 kg), high (1.45 kg), or oscillating (1.43 kg). Similarly, steers fed low had a lower adjusted fat thickness (P < 0.01) and yield grade (P = 0.05) and tended (P = 0.10) to have less marbling than steers fed the other 3 diets. In slurries with feces, urine, soil, and water, incubated for 35 d, nonsoluble CP was similar among slurries from steers fed medium, high, or oscillating, but was less (P < 0.01) in slurries from steers fed low. However, throughout the incubation period, slurries from steers fed high or oscillating had greater (P < 0.01) concentrations of total aromatics and ammonia than those from steers fed low or medium. Also, the slurries from steers fed oscillating had greater (P < 0.01) concentrations of branched-chain VFA than manure slurries from steers fed any of the other diets. These data indicate that although there is no apparent alteration in the performance of finishing steers fed diets with oscillation of the dietary protein, there may be undesirable increases in the production of compounds associated with malodor.


Subject(s)
Cattle/growth & development , Cattle/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/pharmacology , Odorants , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Body Composition/drug effects , Diet/veterinary , Feces/chemistry , Male , Nitrogen/metabolism , Soil/analysis , Urine/chemistry
4.
J Appl Microbiol ; 102(2): 472-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17241353

ABSTRACT

AIM: To evaluate urea hydrolysis, volatile fatty acid (VFA) production (odour) and coliforms in cattle waste slurries after a urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) and a plant oil component (thymol) were added. METHODS AND RESULTS: Faeces from cattle fed a diet of 70% corn silage and 30% alfalfa haylage, urine and distilled water in the ratio 50 : 35 : 15 were blended at high speed for 1 min. Triplicate aliquots of 750 ml were amended with NBPT plus or minus thymol and reblended for 1 min, and were poured into 1.6 l wide-mouth jars covered 90% with a lid. After 56 days, thymol (2000 mg kg(-1) waste) in combination with NBPT (80 mg kg(-1) waste) retained 5.2 g of an initial 9.2 g of urea in cattle waste slurries, compared with less than 1 g of urea retained when NBPT was the only additive (P < 0.05). Another experiment using excreta from cattle fed 76.25% high moisture corn, 19.25% corn silage and a 4.5% supplement, blended at a low speed, gave a similar response with urea hydrolysis; and the two treatments, thymol alone and thymol in combination with NBPT, reduced VFA production (P < 0.01) and eliminated all coliform bacteria by day 1. A third experiment indicated coliforms disappeared in the no addition treatment after 8 days; however, they were viable at 6.6 x 10(4) CFU g(-1) waste beyond 35 days in the NBPT treatment. CONCLUSIONS: Thymol supplements the effect of NBPT by increasing the inhibitory period for hydrolysis of urea in cattle waste slurries and nitrogen retention in the waste. SIGNIFICANCE AND IMPACT OF THE STUDY: Thymol and NBPT offer the potential to reduce odour and pathogens in cattle manure, and increase the fertilizer value.


Subject(s)
Animal Husbandry , Industrial Microbiology , Waste Management , Ammonia/analysis , Hydrogen-Ion Concentration , Hydrolysis , Manure , Odorants , Organophosphorus Compounds/pharmacology , Silage , Thymol/pharmacology , Urease/antagonists & inhibitors
5.
J Anim Sci ; 84(9): 2515-22, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16908657

ABSTRACT

Although Brahman crosses constitute a large portion of US beef cattle, little information is available on their response to diverse feed resources compared with Bos taurus steers. Thus, the objectives were to evaluate genotype and diet effects on steer performance during the growing period and subsequent response to a high grain diet during the finishing period. Fifty-one steers [0 (15), 1/4 (20), 1/2 (7), and 3/4 Brahman (9), with the remaining proportion being MARC III] were allotted to 8 pens. Beginning on December 2, steers were individually fed chopped bromegrass hay (n = 26; DM = 85%, CP = 9.5%, ME = 2.19 Mcal/kg) or a corn silage-based diet (n = 25; DM = 51%, CP = 11.9%, ME = 2.75 Mcal/kg) for 119 d. All steers were then fed a high corn diet (DM = 79%, CP = 11.7%, ME = 3.08 Mcal/kg) to a target BW of 560 kg (176 d). Data were analyzed by ANOVA, with genotype, growing diet, and the 2-way interaction included. The interaction was not significant (P > 0.25). The MARC III and 1/2 Brahman steers weighed more (P < 0.01) than 1/4 or 3/4 Brahman steers initially and at the end of the growing period. Weight of bromegrass-fed (325 kg) steers was less than that of corn silage-fed (384 kg) steers at the end of the growing period. Steer ADG and intake of DM, CP, and ME were less (P = 0.087 to 0.001) for 1/4 and 3/4 Brahman than for 0 or 1/2 Brahman steers during growing, finishing, and total, but efficiency of gain did not differ (P > 0.10). Carcass weight, marbling score, quality grade (P < 0.05), and kidney fat (P = 0.06) differed among genotypes. Daily DMI (6.91 vs. 7.06 kg) was similar, but CP (0.66 vs. 0.84 kg) and ME (15.2 vs. 19.4 Mcal) intake of bromegrass fed was less (P = 0.001) than those of corn silage-fed steers. Values for DMI/gain (22.3 vs. 7.43 kg/kg), CP intake/gain (2.13 vs. 0.88 kg/kg), and ME intake/gain (48.8 vs. 20.4 Mcal/kg) were greater (P < 0.001) in bromegrass-fed than corn silage-fed steers. Over the total study, ADG was lower (0.96 vs. 1.01 kg), and DMI (7.82 vs. 7.19 kg), DMI/gain (8.21 vs. 7.10 kg/kg), and ME intake/gain (22.6 vs. 20.9 Mcal/kg) were greater (P < 0.05) in bromegrass-fed than in corn silage-fed steers. Carcass weight, dressing percent, adjusted backfat, and yield grade (P < 0.05) were greater for corn silage-fed than for bromegrass-fed steers. Feed intake and performance, but not efficiency, differed among these genotypes. Compensatory performance during finishing was insufficient to overcome reduced performance during the growing period.


Subject(s)
Cattle/genetics , Cattle/physiology , Diet/veterinary , Feces/chemistry , Feces/microbiology , Odorants/analysis , Animal Feed , Animals , Cattle/microbiology , Feeding Behavior , Genotype , Male
6.
J Anim Sci ; 84(9): 2523-32, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16908658

ABSTRACT

This study assessed the influence of cattle genotype and diet on the carriage and shedding of zoonotic bacterial pathogens and levels of generic Escherichia coli in feces and ruminal contents of beef cattle during the growing and finishing periods. Fifty-one steers of varying proportions of Brahman and MARC III [0 (15), 1/4 (20), 1/2 (7), and 3/4 Brahman (9)] genotypes were divided among 8 pens, such that each breed type was represented in each pen. Four pens each were assigned to 1 of 2 diets [100% chopped bromegrass hay or a diet composed primarily of corn silage (87%)] that were individually fed for a 119-d growing period, at which time the steers were switched to the same high-concentrate, corn-based finishing diet and fed to a target weight of 560 kg. Feces or ruminal fluid were collected and analyzed at alternating intervals of 14 d or less. Generic E. coli concentrations in feces or ruminal fluid did not differ (P > 0.10) by genotype or by growing diet in the growing or finishing periods. However, the concentrations in both feces and ruminal fluid increased in all cattle when switched to the same high-corn diet in the finishing period. There was no effect (P > 0.25) of diet or genotype during either period on E. coli O157 shedding in feces. Forty-one percent of the steers were positive for Campylobacter spp. at least once during the study, and repeated isolations of Campylobacter spp. from the same steer were common. These repeated isolations from the same animals may be responsible for the apparent diet (P = 0.05) and genotype effects (P = 0.02) on Campylobacter in feces in the finishing period. Cells bearing stx genes were detected frequently in both feces (22.5%) and ruminal fluid (19.6%). The number of stx-positive fecal samples was greater (P < 0.05) for 1/2 Brahman steers (42.9%) than for 1/4 Brahman (25.0%) or 3/4 Brahman steers (22.2%), but were not different compared with MARC III steers (38.3%). The greater feed consumption of 1/2 Brahman and MARC III steers may have resulted in greater starch passage into the colon, accompanied by an increase in fecal bacterial populations, which may have further improved the ability to detect stx genes in these cattle. There was no correlation between either ADG or daily DMI and the number of positive samples of E. coli O157, Campylobacter spp., or stx genes, which agrees with our current understanding that these microorganisms occur commonly in, and with no measurable detriment to, healthy cattle.


Subject(s)
Cattle/genetics , Cattle/physiology , Diet/veterinary , Feces/chemistry , Feces/microbiology , Odorants/analysis , Animal Feed , Animals , Campylobacter/isolation & purification , Escherichia coli/isolation & purification , Feeding Behavior , Genotype , Male , Rumen/microbiology , Salmonella/isolation & purification , Time Factors
7.
J Anim Sci ; 84(9): 2533-45, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16908659

ABSTRACT

Three beef cattle diets were assessed for their potential to produce odorous compounds from cattle feces excreted during the growing and finishing periods. Eight pens containing 51 steers of varying proportions of Brahman and MARC III genotypes were fed either a chopped bromegrass hay diet or a corn silage diet for a 119-d growing period. After the growing period, all steers were switched to the same high-corn finishing diet (high corn) and fed to a target weight of 560 kg (finishing period). Fecal slurries were prepared from a composite of fresh fecal pats collected in each pen during both periods and incubated anaerobically. In additional flasks, starch, protein, or cellulose was added to the composite fecal subsamples to determine the preferred substrates for fermentation and odorous compound production. The content and composition of the fermentation products varied both initially and during the incubation, depending on the diet fed to the steers. The corn silage and high corn feces had the greater initial content of VFA (381.0 and 524.4 micromol/g of DM, respectively) compared with the bromegrass feces (139.3 micromol/g of DM) and accumulated more VFA than the bromegrass feces during the incubation. l-Lactic acid and VFA accumulation in the high corn and corn silage feces was at the expense of starch, based on starch loss and the production of straight-chain VFA. In the bromegrass feces, accumulation of branched-chain VFA and aromatic compounds and the low starch availability indicated that the protein in the feces was the primary source for odorous compound production. Substrate additions confirmed these conclusions. We conclude that starch availability was the primary factor determining accumulation and composition of malodorous fermentation products, and when starch was unavailable, fecal microorganisms utilized protein.


Subject(s)
Cattle/genetics , Cattle/physiology , Diet/veterinary , Feces/chemistry , Feces/microbiology , Odorants/analysis , Animal Feed , Animals , Feeding Behavior , Fermentation , Genotype , Male
8.
J Anim Sci ; 84(7): 1767-77, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16775061

ABSTRACT

We hypothesized that feeding steers ground high-moisture ensiled corn (HMC) in lieu of dry-rolled corn (DRC) would reduce the amount of starch being excreted in the manure and the associated odorous compound production. One hundred forty-eight crossbred steers (363 +/- 33 kg of BW) were fed a DRC-or HMC-based diet in a feeding trial, and 8 Charolais-sired steers (447 +/- 22 kg of BW) were used in a nutrient balance study. Steers fed HMC tended to have a slightly lower DMI (P = 0.09), ADG (P = 0.06), and yield grade, but G:F, final HCW, and quality grade did not differ (P > or = 0.23) between treatments. Compared with feeding DRC, feeding HMC decreased (P = 0.02) starch intake from 5,407 to 4,846 g/d, decreased (P < 0.01) fecal excretion of starch from 448 to 292 g/d, and increased (P = 0.03) starch digestibility from 91.7 to 94.1%. Nitrogen intake was greater (P < 0.01) for steers fed DRC than HMC in both studies, but N retention did not differ (P = 0.55). Heat production and energy retention did not differ between the 2 treatments (P > or = 0.55). In manure slurries incubated for 35 d with soil and water, total VFA concentration was lower (P < 0.01) in manure from steers fed HMC (1,625 micromol/g of DM) compared with steers fed DRC (3,041 micromol/g of DM). Lower initial (d 0) starch concentrations and greater initial pH was also observed in the slurries from the HMC manure. By d 3 of slurry incubation, there was an increase (P < 0.01) in free glucose and l-lactic acid in the DRC slurries but not in the HMC slurries. During manure incubation, alcohol and VFA content increased (P < 0.01) and pH declined, but to a lesser extent (P < 0.01) in the HMC slurries. However, branched-chain VFA increased more (P < 0.01) in the HMC slurries than in the DRC slurries. These data suggest that feeding HMC instead of DRC decreased fecal starch and production of some potentially odorous compounds in a finishing cattle system but had little impact on animal productivity.


Subject(s)
Animal Feed , Cattle/metabolism , Diet/veterinary , Feces/chemistry , Odorants , Water/analysis , Zea mays/chemistry , Animal Nutritional Physiological Phenomena , Animals , Soil , Water/pharmacology
9.
J Anim Sci ; 84(2): 481-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16424277

ABSTRACT

Confined animal feeding operations can be a source of odor emissions, global warming gases, water pollution, and food contamination. Laboratory studies have indicated that plant oils with antimicrobial activity can be used to control pathogens and odor emissions from cattle and swine wastes. However, these oils are aromatic and may volatilize when applied topically. Our objectives were to evaluate the volatility of thymol from a feedlot surface and the effectiveness of topically applying thyme oil (2.5% thymol), incorporated into corncob granules and added once per week, to control odor emissions and total coliforms in feedlot manure. In the first study, thymol either volatilized or was degraded within 28 d after topical application. In a second study, thyme oil (2.5% thymol) was incorporated into corncobs and applied to pen surfaces weekly. Manure samples from 6 locations in each pen were collected from 3 untreated and 3 thymol-corncob-treated pens (15 x 150 m; fifty 400-kg cattle/pen), 3 times per week for 8 wk. Samples were analyzed for thymol concentration, total VFA, branched-chain VFA, aromatic compounds, and the number of Escherichia coli and total coliform bacteria. Over the 8 wk, with the exception of wk 7, the desired thymol concentration of 15 to 20 micromol/g DM was maintained in the manure. Concentrations of VFA and branched chain-VFA increased over time in untreated and treated pens. However, the rate of VFA accumulation in treated pens (7.5 +/- 1.3 micromol.g DM(-1).wk(-1)) was less (P < 0.01) than the rate of accumulation in untreated pens (18.0 +/- 2.1 micromol.g DM(-1).wk(-1)). Likewise, the rate of branched-chain VFA accumulation in treated pens (0.31 +/- 0.04 micromol.g DM(-1).wk(-1)) was less (P < 0.01) than in untreated pens (0.55 +/- 0.06 micromol.g DM(-1).wk(1)). The concentrations of E. coli in treated pens (2.9 +/- 1.2 x 10(5) cfu.g DM(-1)) were 91% less (P < 0.04) than in untreated pens (31.1 +/- 4.0 x 10(5) cfu.g DM(-1)). Similarly, concentrations of coliforms in treated pens (3.7 +/- 1.3 x 10(5) cfu.g DM(-1)) were 89% less (P < 0.04) than those of untreated pens (35.3 +/- 4.2 x 10(5) cfu.g DM(-1)). These results indicate that odor emissions and total coliforms can be reduced in feedlot manure with a once per week application of thymol incorporated in a granular form. However, corncobs are bulky, and other granular carriers with a greater carrying capacity for thyme oil should be explored.


Subject(s)
Cattle/physiology , Enterobacteriaceae/drug effects , Odorants/prevention & control , Thymol/metabolism , Thymol/pharmacology , Animal Husbandry/methods , Animals , Enterobacteriaceae/isolation & purification , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Fatty Acids, Volatile/chemistry , Feces/chemistry , Feces/microbiology , Housing, Animal/standards , Thymol/administration & dosage , Thymol/analysis , Time Factors , Zea mays
10.
Microb Ecol ; 51(1): 22-35, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16382283

ABSTRACT

Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 microM) and ammonium (19 to 625 microM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with (15)N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 mumol (L aquifer)(-1) h(-1) with in situ oxygen concentrations and up to 0.81 mumol (L aquifer)(-1) h(-1) with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.


Subject(s)
Nitrogen/chemistry , Nitrogen/metabolism , Water/analysis , Bromides/analysis , Geologic Sediments/chemistry , Hydrocarbons, Fluorinated/chemistry , Nitrites/analysis , Nitrites/chemistry , Nitrogen/analysis , Nitrogen Fixation , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Oxygen/chemistry , Quaternary Ammonium Compounds/chemistry , Time Factors , Waste Disposal, Fluid
11.
J Appl Microbiol ; 99(2): 400-7, 2005.
Article in English | MEDLINE | ID: mdl-16033472

ABSTRACT

AIMS: To determine the possible effects of inclusion of dried skim milk (DSM) in swine diets on indigenous Lactobacillus spp. and Escherichia coli, and its potential for controlling pathogen shedding and affect animal growth in growing-finishing swine. METHODS AND RESULTS: Animals were fed over three dietary phases to match production needs from age 10-14 weeks, 14-18 weeks and 18-22 weeks. For each feeding phase, diets were formulated to contain 0 or 10% DSM (balanced for metabolizable energy and true ileal digestible amino acids). Animals were weighed every 2 weeks and faecal samples were collected from 40 animals (20 with DSM and 20 without DSM) at week 10 (d 0 on diets), 14, 18 and 22 of age, and were analysed for Lactobacillus spp., Enterobacteriaceae, coliforms, E. coli, Salmonella, Campylobacter and E. coli O157:H7. At the start of the study (week 10), faecal bacterial counts (log10 CFU g(-1) faeces) were 9.55, 7.26, 7.01 and 6.93 for Lactobacillus, Enterobacteriaceae, coliforms and E. coli populations respectively. The Enterobacteriaceae, coliform and E. coli populations decreased through week 14 and 18, but were higher in animals fed with the DSM diet compared with the basal diet without DSM. The Lactobacillus populations at weeks 14 and 18 were lower in the animals fed the diet without DSM, whereas feeding DSM maintained the Lactobacillus counts from week 10. At week 22, populations of Enterobacteriaceae, coliforms and E. coli were >week 18 for the animals fed the diet without DSM, less change was observed with the feeding of DSM, and no differences between the diets were observed at week 22. However, in week 22 the animal gain was positively correlated with Lactobacillus numbers and negatively correlated with E. coli numbers. Subtraction of the E. coli population (log10) from the Lactobacillus population (log10) yielded a positive value termed 'effective'Lactobacillus that correlated well with animal gain and may better define a beneficial function in the intestine. Salmonella were detected in over 60% of the animals at week 10 and 14, and <20% at week 18 and 22. Campylobacter were detected rarely at weeks 10, 14 and 18, but were found in 25% of the animals at week 22. The DSM did not affect Salmonella or Campylobacter shedding, but examination of individual animals over the entire experiment indicated that fewer recurring incidences of Salmonella shedding occurred in animals that maintained higher Lactobacillus. In addition, at week 22, Salmonella and Campylobacter shedding was associated with lower levels of effective Lactobacillus and lower animal weight gains. CONCLUSIONS: The DSM did not directly affect the animal performance or pathogen shedding via the Lactobacillus spp. population at any phase of production. However, analysis of data from all animals revealed that faecal Lactobacillus affected Salmonella shedding and in the finishing phase, animal growth and pathogen shedding also were affected, as reflected by the 'effective'Lactobacillus-associated observations. SIGNIFICANCE AND IMPACT OF THE STUDY: In the swine intestine, any benefits from gastrointestinal Lactobacillus may be compromized by the E. coli population, and this antagonism may explain responses observed with prebiotics or probiotics in some swine.


Subject(s)
Animal Feed , Enterobacteriaceae/isolation & purification , Lactobacillus/isolation & purification , Milk , Swine/microbiology , Animals , Campylobacter/isolation & purification , Colony Count, Microbial/methods , Escherichia coli/isolation & purification , Feces/microbiology , Salmonella/isolation & purification , Swine/growth & development , Weight Gain/physiology
12.
J Anim Sci ; 82(11): 3338-45, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15542481

ABSTRACT

Two trials were conducted to determine the replacement nutritive value of dried skim milk for growing-finishing pigs. In a three-phase feeding trial, 180 growing composite barrows (40.8 +/- 2.9 kg BW) were allotted to three dietary treatments. Each phase lasted 28 d. Treatment 1 comprised a basal corn-soybean meal diet supplemented with crystalline AA to contain true ileal digestible concentrations (as-fed basis) of 0.83, 0.66, and 0.52% Lys; 0.53, 0.45, and 0.40% Thr; and 0.51, 0.45, and 0.42% sulfur amino acids (SAA; Met + Cys) in Phases 1, 2, and 3, respectively. Treatments 2 and 3 were the basal diets with 5 and 10% (as-fed basis) dried skim milk added. The three diets at each phase were formulated to have the same quantities of DE, true ileal digestible Lys, Thr, Trp, SAA, Ca, and available P. Pigs were housed 10 per pen (six pens/treatment), allowed ad libitum access to feed, and slaughtered at 121.6 +/- 9.3 kg BW. No differences were detected between pigs fed the basal diet and the dried skim milk diets or between pigs fed the 5 and 10% dried skim milk diets, respectively, in 84-d ADG (P = 0.84 or P = 0.71), ADFI (P = 0.54 or P = 0.91), and G:F (P = 0.80 or P = 0.97), in hot carcass weight (P = 0.66 or P = 0.74), 45-min postmortem LM pH (P = 0.90 or P = 0.53), 10th-rib backfat thickness (P = 0.24 or P = 0.77), LM area (P = 0.13 or P = 0.63), weights of belly (P = 0.43 or P = 0.70), trimmed wholesale cuts (P = 0.18 to 0.85 or P = 0.06 to 0.53), and ham components (P = 0.25 to 0.98 or P = 0.32 to 0.63). In the N balance trial, four littermate pairs of finishing gilts (82.9 +/- 2.0 kg BW) were assigned within pair to the basal or the 10% dried skim milk (as-fed basis) finishing diet. Daily feed allowance was 2.6x maintenance DE requirement and was given in two equal meals. Total fecal collection from eight meals and a 96-h urine collection began on d 14 when gilts weighed 92.1 +/- 2.2 kg BW. No differences were found between dietary treatments in gilt's daily N intake (P = 0.33) and the daily output of urinary urea (P = 0.88), urinary N (P = 0.97), fecal N (P = 0.69), and total manure (P = 0.62), as well as apparent total-tract N digestibility (P = 0.84) and N retention (P = 0.84). It is concluded that growing-finishing pigs fed diets containing 10% dried skim milk would have growth performance, carcass traits, and N digestibility and use similar to those fed typical corn-soybean meal diets.


Subject(s)
Animal Feed , Diet , Feces/chemistry , Glycine max , Milk , Nitrogen/metabolism , Swine/growth & development , Animals , Body Composition/physiology , Nitrogen/analysis , Nitrogen/urine , Swine/metabolism , Weight Gain
13.
Water Sci Technol ; 50(4): 207-13, 2004.
Article in English | MEDLINE | ID: mdl-15484763

ABSTRACT

Wastes generated from the production of cattle and swine in confined facilities create the potential for surface and groundwater pollution, emission of greenhouse gases, transmission of pathogens to food and water sources, and odor. It is our hypothesis that something which inhibits microbial fermentation in livestock wastes will be beneficial to solving some of the environmental problems. Our work has concentrated on the use of antimicrobial plant oils, thymol, thyme oil, carvacrol, eugenol and clove oil. Anaerobic one-litre flasks with a working volume of 0.5 L cattle or swine manure were used to evaluate the effect of thymol and eugenol on production of fermentation gas, short-chain volatile fatty acids, lactate, and bacterial populations. Either oil at 0.2% in both wastes essentially stopped all production of gas and volatile fatty acids, and eliminated all fecal coliform bacteria. In cattle but not swine waste, thymol prevented the accumulation of lactate. However, eugenol stimulated lactate formation in cattle and swine wastes. Thus, eugenol may offer a distinct advantage over thymol, because lactate accumulation in the wastes causes the pH to drop more rapidly, further inhibiting microbial activity and nutrient emissions. We conclude that plant oils may offer solutions to controlling various environmental problems associated with livestock wastes, assuming that they are cost-effective.


Subject(s)
Anti-Infective Agents/pharmacology , Environmental Pollution/prevention & control , Eugenol/pharmacology , Manure , Odorants/prevention & control , Thymol/pharmacology , Animals , Cattle , Fermentation , Lactic Acid/metabolism , Swine
14.
J Anim Sci ; 81(9): 2131-8, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12968686

ABSTRACT

Odors from swine production facilities are associated with the storage and decomposition of manure. Diet is linked to manure composition and will likely affect odor, but the microbial mechanisms responsible for manure decomposition and odor production are poorly understood. To identify the sources of odor during manure fermentation, substrates (starch, casein, and cellulose) were added to slurries of fresh swine manure, and the anaerobic accumulation of fermentation products and the consumption of substrates were measured relative to no addition of substrates. Volatile fatty acids and alcohols were the dominant fermentation products in all treatments. The total VFA concentration from starch treatment was greater (P < 0.001) than for all other treatments. Branched-chain VFA and aromatic compounds accumulated in all treatments, but accumulation in the casein treatments was greater (P < 0.001) than in all other treatments. Thus, addition of carbohydrate to swine manure slurries did not circumvent protein fermentation, as was previously observed in cattle manure slurries. Based on substrate loss, starch and protein fermentation were equivalent in all treatments, with losses of each exceeding 4% of the DM. Substrate additions had a limited effect on the overall accumulation of odor compounds in manure and on odor compound composition. Compared with the results of the earlier fermentation study of fresh cattle manure, swine manure fermentation produced less lactate and more products of protein fermentation (branched-chain VFA and aromatic ring compounds). We hypothesize that differences in manure organic matter composition between cattle and swine, a result of diet and digestion, select for bacterial communities that are adapted to the available substrate composition.


Subject(s)
Bacteria, Anaerobic/metabolism , Manure/microbiology , Odorants/analysis , Proteins/metabolism , Starch/metabolism , Animal Feed , Animals , Biodegradation, Environmental , Fatty Acids, Volatile/analysis , Fermentation , Manure/analysis , Swine , Time Factors
15.
J Anim Sci ; 80(9): 2214-22, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12349997

ABSTRACT

Very little is known about the biochemical origin of cattle feedlot odors and the environmental factors controlling their production. The tie between diet and manure composition is well established, but the effect of different manure compositions on odorous chemical production is unknown. This study describes the effect of starch, casein, and cellulose substrate additions to slurries of fresh (< 24 h) and aged cattle manure (> 1 d) on the anaerobic production of fermentation products and the consumption of substrates relative to no addition treatments. Aged cattle manure accumulated more VFA (245 to 290 mM) than the fresh manure (91 to 181 mM) irrespective of substrate additions (P < 0.001). In fresh manures, VFA concentrations were increased (P < 0.01) over no addition treatments when carbohydrate (starch or cellulose) was added, whereas starch and protein treatments to aged manure increased VFA content relative to no addition treatments (P < 0.001). Branched-chain VFA and aromatic compounds accumulated only in the aged manure (no addition and protein treatments), indicating that some protein fermentation occurred in those treatments. Based upon substrate loss, starch fermentation was the dominant process in both manures and all treatments with losses exceeding 18.6 g/L. Protein fermentation occurred only in the aged manure, specifically the no addition and protein treatments, when starch was no longer available. The production of odorous compounds from manure was controlled by substrate availability and pH, with pH related to lactate accumulation. We believe that calcareous soil and lactate-consuming microorganisms in the aged manure slurries minimized slurry acidification and resulted in greater accumulations of odorous products. Substrate additions had little effect on the overall accumulation of odor compounds in manure but had profound effects on odor compound composition. We propose that modifying cattle diets to limit starch and protein excretion would profoundly affect the production and accumulation of odor compounds in feedlots.


Subject(s)
Bacteria, Anaerobic/metabolism , Manure/microbiology , Odorants/analysis , Proteins/metabolism , Starch/metabolism , Animals , Biodegradation, Environmental , Caseins/metabolism , Cattle , Cellulose/metabolism , Diet/veterinary , Fatty Acids, Volatile/analysis , Fermentation , Hydrogen-Ion Concentration , In Vitro Techniques , Lactates , Manure/analysis , Odorants/prevention & control , Time Factors
16.
J Anim Sci ; 79(10): 2503-12, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11721828

ABSTRACT

Agricultural odors present an increasingly difficult challenge to livestock producers, yet very little information is available on the microbiology of odor production or microbial factors that regulate the emission of odors. This study examined the microbial potential for odor production and odor consumption in two soils from a cattle production facility in central Nebraska. The two soils tested were collected from a feedlot pen and a runoff ditch below the pen and contained high- and low-fecal matter content, respectively. These soils were tested for their ability to produce and consume a mixture of VFA and aromatic compounds (phenols and indoles) under aerobic, fermentative, and anaerobic respiratory conditions, with NO3-, Fe(III), Mn(IV), and SO4(2-) serving as anaerobic terminal electron acceptors, over a 6-wk incubation. The pen soil had greater (P < 0.05) initial total VFA content (40 micromol/g soil) and produced more VFA during incubation than the feedlot ditch soil, whereas total aromatic compound concentrations were not significantly different between soils. The general pattern of odor compound accumulation and consumption did not differ between soils. Oxygen and nitrate treatments produced very little VFA and consumed acetate more rapidly than the other treatments, which produced large quantities of short-chain VFA and consumed acetate only after all other VFA were consumed. When VFA and aromatic compound consumption was compared across all the treatments, aerobic incubation proved most effective, and all compounds were rapidly consumed by the second day of incubation. Of the anaerobic treatments examined, nitrate proved most effective, followed by Fe, with VFA consumed by d 5 and 21, respectively. Anaerobic incubation with sulfate produced more VFA than the fermentative incubation, and anaerobic incubation with oxidized Mn produced the largest quantities of VFA, which remained high throughout the six-wk incubation. Aromatic compounds were more easily consumed aerobically and were only slowly consumed in the anaerobic treatments. We conclude from this study that cattle feedlot soils possessed a varying, potentially exploitable capacity for odor consumption when alternate electron acceptors were available.


Subject(s)
Bacteria/metabolism , Fatty Acids, Volatile/metabolism , Indoles/metabolism , Odorants/prevention & control , Phenols/metabolism , Soil Pollutants/metabolism , Aerobiosis , Anaerobiosis , Animals , Biodegradation, Environmental , Cattle , Feces/chemistry , Feces/microbiology , Fermentation , Iron/metabolism , Manganese/metabolism , Manure/microbiology , Nebraska , Nitrates/metabolism , Oxygen/metabolism , Soil/analysis , Soil Microbiology , Sulfates/metabolism
17.
Environ Sci Technol ; 35(1): 196-203, 2001 Jan 01.
Article in English | MEDLINE | ID: mdl-11352011

ABSTRACT

In situ stimulation of denitrification has been proposed as a mechanism to remediate groundwater nitrate contamination. In this study, sodium formate was added to a sand and gravel aquifer on Cape Cod, MA, to test whether formate could serve as a potential electron donor for subsurface denitrification. During 16- and 10-day trials, groundwater from an anoxic nitrate-containing zone (0.5-1.5 mM) was continuously withdrawn, amended with formate and bromide, and pumped back into the aquifer. Concentrations of groundwater constituents were monitored in multilevel samplers after up to 15 m of transport by natural gradient flow. Nitrate and formate concentrations were decreased 80-100% and 60-70%, respectively, with time and subsequent travel distance, while nitrite concentrations inversely increased. The field experiment breakthrough curves were simulated with a two-dimensional site-specific model that included transport, denitrification, and microbial growth. Initial values for model parameters were obtained from laboratory incubations with aquifer core material and then refined to fit field breakthrough curves. The model and the lab results indicated that formate-enhanced nitrite reduction was nearly 4-fold slower than nitrate reduction, but in the lab, nitrite was completely consumed with sufficient exposure time. Results of this study suggest that a long-term injection of formate is necessary to test the remediation potential of this approach for nitrate contamination and that adaptation to nitrite accumulation will be a key determinative factor.


Subject(s)
Formates/metabolism , Nitrates/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Fresh Water/analysis , Massachusetts , Models, Theoretical , Nitrites/metabolism
18.
Appl Environ Microbiol ; 67(3): 1366-70, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11229933

ABSTRACT

Carvacrol and thymol in combination at 6.7 mM each completely inhibited the production of short-chain volatile fatty acids and lactate from cattle waste in anoxic flasks over 23 days. Fecal coliforms were reduced from 4.6 x 10(6) to 2.0 x 10(3) cells per ml 2 days after treatment and were nondetectable within 4 days. Total anaerobic bacteria were reduced from 8.4 x 10(10) to 1.5 x 10(7) cells per ml after 2 days and continued to be suppressed to that level after 14 days. If the concentration of carvacrol or thymol were doubled (13.3 mM), either could be used to obtain the same inhibitory fermentation effect. We conclude that carvacrol or thymol may be useful as an antimicrobial chemical to control pathogens and odor in stored livestock waste.


Subject(s)
Anti-Bacterial Agents/pharmacology , Manure/microbiology , Monoterpenes , Plant Oils/pharmacology , Terpenes/pharmacology , Thymol/pharmacology , Animals , Bacteria, Anaerobic/drug effects , Cattle , Cymenes , Escherichia coli/drug effects , Fatty Acids, Volatile/analysis , Gases/metabolism
19.
J Microbiol Methods ; 44(1): 49-58, 2001 Feb 01.
Article in English | MEDLINE | ID: mdl-11166099

ABSTRACT

A variety of gel filtration resins (Sephadex G200 and G150; Sepharose 6B, 4B and 2B; Bio-Gel P100, P200; and Toyopearl HW 55, HW 65, and HW 75) were evaluated for their efficacy in removing PCR-inhibitory substances from feedlot soil DNA crude extracts using gravity-flow disposable columns. Sepharose resins demonstrated the best properties for DNA purification when compared to other gel filtration resins, and Sepharose 2B was the most efficient purification resin based upon flow rate and the elution of DNA and humic acids from the columns. A method for purifying large solution volumes of DNA extract economically was also developed using low-cost disposable Disposaflex columns. Crude DNA extracts of cattle feedlot soil and aquifer sediment impacted by animal and human wastes were easily purified using the Disposaflex column method regardless of whether a gentle chemical lysis or a bead mill homogenization DNA extraction method was employed.


Subject(s)
Chromatography, Gel/methods , Geologic Sediments/microbiology , Resins, Plant/analysis , Soil Microbiology , Animals , Cattle , DNA, Bacterial/isolation & purification , Dextrans/analysis , Gels , Humic Substances/isolation & purification , Polymerase Chain Reaction/methods
20.
J Anim Sci ; 79(12): 2949-56, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11811446

ABSTRACT

Livestock odors are closely correlated to airborne concentrations of volatile organic compounds (VOC), which are a complex mixture of carbon-, sulfur-, and nitrogen-containing compounds produced primarily during the incomplete anaerobic fermentation of animal manure by microorganisms. Volatile fatty acids, alcohols, and aromatic ring compounds comprise a substantial fraction of VOC, yet very little is known about their biochemical origin and environmental factors controlling their production. The anaerobic production of fermentation products and consumption of substrates (CP, starch, and nonstarch carbohydrate) were analyzed in slurries of fresh (< 24 h) and aged (> 1 d) cattle manure over several weeks. Ethanol, acetate, propionate, butyrate, lactate, and H2 were the major products of fermentation. Aged cattle manure produced twice the concentration of VFA during incubation produced by the fresh manure (P < 0.001). Aromatic compounds (phenols, indoles, and benzoates) remained unchanged in both manures. Production of VFA from fresh manure was inhibited when the pH fell below 4.5. It is likely that the presence of calcareous soil, which has a high buffering capacity, and lactate-consuming microorganisms minimized acidification in the aged manure slurries. Low starch content limited VFA production in the aged manure. Starch was the likely biochemical source for fermentation products in both manures based on the strong negative correlations between fermentation product and starch content (r = -0.944 and -0.773) and ratio of fermentation products produced to starch consumed (r = 0.64 and 0.72) for fresh and aged manure, respectively. Nonstarch carbohydrate served an indeterminate role in the production of fermentation products. Nonstarch carbohydrate decreased by 4.7 and 23.4 g/L in the fresh and aged manure, respectively, whereas the starch content decreased by 18.6 and 22.4 g/L in the fresh and aged manure, respectively. The concentration of CP did not change, which suggests a balance between protein consumption and new bacterial biomass production. We conclude that the types of substrates in cattle manure and the feedlot soils where they are deposited are significant factors in the production of odors.


Subject(s)
Bacteria, Anaerobic/metabolism , Carbohydrate Metabolism , Manure/microbiology , Odorants/analysis , Animals , Biodegradation, Environmental , Cattle , Fatty Acids, Volatile/biosynthesis , Fermentation , Hydrogen-Ion Concentration , Starch/metabolism , Time Factors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...