Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 122(6): 1531-1541, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35429292

ABSTRACT

BACKGROUND: Humans display an age-related decline in cerebral blood flow and increase in blood pressure (BP), but changes in the underlying control mechanisms across the lifespan are less well understood. We aimed to; (1) examine the impact of age, sex, cardiovascular disease (CVD) risk, and cardio-respiratory fitness on dynamic cerebral autoregulation and cardiac baroreflex sensitivity, and (2) explore the relationships between dynamic cerebral autoregulation (dCA) and cardiac baroreflex sensitivity (cBRS). METHODS: 206 participants aged 18-70 years were stratified into age categories. Cerebral blood flow velocity was measured using transcranial Doppler ultrasound. Repeated squat-stand manoeuvres were performed (0.10 Hz), and transfer function analysis was used to assess dCA and cBRS. Multivariable linear regression was used to examine the influence of age, sex, CVD risk, and cardio-respiratory fitness on dCA and cBRS. Linear models determined the relationship between dCA and cBRS. RESULTS: Age, sex, CVD risk, and cardio-respiratory fitness did not impact dCA normalised gain, phase, or coherence with minimal change in all models (P > 0.05). cBRS gain was attenuated with age when adjusted for sex and CVD risk (young-older; ß = - 2.86 P < 0.001) along with cBRS phase (young-older; ß = - 0.44, P < 0.001). There was no correlation between dCA normalised gain and phase with either parameter of cBRS. CONCLUSION: Ageing was associated with a decreased cBRS, but dCA appears to remain unchanged. Additionally, our data suggest that sex, CVD risk, and cardio-respiratory fitness have little effect.


Subject(s)
Baroreflex , Cardiovascular Diseases , Baroreflex/physiology , Blood Flow Velocity , Blood Pressure/physiology , Cardiovascular Diseases/etiology , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Humans , Ultrasonography, Doppler, Transcranial
2.
Eur J Endocrinol ; 181(6): 659-669, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31614332

ABSTRACT

BACKGROUND: Remote ischaemic preconditioning (rIPC) may improve cardiac/cerebrovascular outcomes of ischaemic events. Ischaemic damage caused by cardiovascular/cerebrovascular disease are primary causes of mortality in type 2 diabetes mellitus (T2DM). Due to the positive effects from a bout of rIPC within the vasculature, we explored if daily rIPC could improve endothelial and cerebrovascular function. The aim of this pilot study was to obtain estimates for the change in conduit artery and cerebrovascular function following a 7-day rIPC intervention. METHODS: Twenty-one patients with T2DM were randomly allocated to either 7-day daily upper-arm rIPC (4 × 5 min 220 mmHg, interspaced by 5-min reperfusion) or control. We examined peripheral endothelial function using flow mediated dilation (FMD) before and after ischemia-reperfusion injury (IRI, 20 min forearm ischaemic-20 min reperfusion) and cerebrovascular function, assessed by dynamic cerebral autoregulation (dCA) at three time points; pre, post and 8 days post intervention. RESULTS: For exploratory purposes, we performed statistical analysis on our primary comparison (pre-to-post) to provide an estimate of the change in the primary and secondary outcome variables. Using pre-intervention data as a covariate, the change from pre-post in FMD was 1.3% (95% CI: 0.69 to 3.80; P = 0.09) and 0.23 %cm/s %/mmHg mmHg/% (-0.12, 0.59; P = 0.18) in dCA normalised gain with rIPC versus control. Based upon this, a sample size of 20 and 50 for FMD and normalised gain, respectively, in each group would provide 90% power to detect statistically significant (P < 0.05) between-group difference in a randomised controlled trial. CONCLUSION: We provide estimates of sample size for a randomised control trial exploring the impact of daily rIPC for 7 days on peripheral endothelial and cerebrovascular function. The directional changes outline from our pilot study suggest peripheral endothelial function can be enhanced by daily rIPC in patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Ischemic Preconditioning/methods , Reperfusion Injury/therapy , Aged , Female , Humans , Male , Middle Aged , Pilot Projects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...