Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(19): 190401, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804950

ABSTRACT

Determining the statistics of work done on a quantum system while strongly coupled to a reservoir is a formidable task, requiring the calculation of the full eigenspectrum of the combined system and reservoir. Here, we show that this issue can be circumvented by using a polaron transformation that maps the system into a new frame where weak-coupling theory can be applied. Crucially, this polaron approach reproduces the Jarzynski fluctuation theorem, thus ensuring consistency with the laws of stochastic thermodynamics. We apply our formalism to a system driven across the Landau-Zener transition, where we identify clear signatures in the work distribution arising from a non-negligible coupling to the environment. Our results provide a new method for studying the stochastic thermodynamics of driven quantum systems beyond Markovian, weak-coupling regimes.

2.
Phys Rev E ; 103(5-1): 052138, 2021 May.
Article in English | MEDLINE | ID: mdl-34134351

ABSTRACT

In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy, respectively, when a system is driven out of equilibrium. For quantum systems, these quantities can be identified at the stochastic level by unravelling the system's evolution in terms of quantum jump trajectories. We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems, whose instantaneous steady states are of Gibbs form. If the driven system remains close to the instantaneous Gibbs state at all times, then we show that the corresponding two-variable cumulant generating function implies a joint detailed fluctuation theorem so long as detailed balance is satisfied. As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady states, and for systems that violate detailed balance. This FDR contains a term arising from genuinely quantum fluctuations, and extends an analogous relation from classical thermodynamics to the quantum regime.

3.
Phys Rev Lett ; 126(21): 210603, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34114847

ABSTRACT

Thermodynamic uncertainty relations express a trade-off between precision, defined as the noise-to-signal ratio of a generic current, and the amount of associated entropy production. These results have deep consequences for autonomous heat engines operating at steady state, imposing an upper bound for their efficiency in terms of the power yield and its fluctuations. In the present Letter we analyze a different class of heat engines, namely, those which are operating in the periodic slow-driving regime. We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines: it allows for engines that produce finite power, with small power fluctuations, to operate close to reversibility. The bound further incorporates the effect of quantum fluctuations, which reduces engine efficiency relative to the average power and reliability. We finally illustrate our findings in the experimentally relevant model of a single-ion heat engine.

4.
Entropy (Basel) ; 22(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-33286845

ABSTRACT

Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines.

5.
Phys Rev Lett ; 125(16): 160602, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124861

ABSTRACT

Information is physical but information is also processed in finite time. Where computing protocols are concerned, finite-time processing in the quantum regime can dynamically generate coherence. Here we show that this can have significant thermodynamic implications. We demonstrate that quantum coherence generated in the energy eigenbasis of a system undergoing a finite-time information erasure protocol yields rare events with extreme dissipation. These fluctuations are of purely quantum origin. By studying the full statistics of the dissipated heat in the slow-driving limit, we prove that coherence provides a non-negative contribution to all statistical cumulants. Using the simple and paradigmatic example of single bit erasure, we show that these extreme dissipation events yield distinct, experimentally distinguishable signatures.

6.
Phys Rev Lett ; 125(26): 260602, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33449720

ABSTRACT

When engineering microscopic machines, increasing efficiency can often come at a price of reduced reliability due to the impact of stochastic fluctuations. Here we develop a general method for performing multiobjective optimization of efficiency and work fluctuations in thermal machines operating close to equilibrium in either the classical or quantum regime. Our method utilizes techniques from thermodynamic geometry, whereby we match optimal solutions to protocols parametrized by their thermodynamic length. We characterize the optimal protocols for continuous-variable Gaussian machines, which form a crucial class in the study of thermodynamics for microscopic systems.

7.
Phys Rev Lett ; 123(23): 230603, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868503

ABSTRACT

An important result in classical stochastic thermodynamics is the work fluctuation-dissipation relation (FDR), which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations. We show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated along the protocol, and we derive a quantum generalization of the work FDR. The additional quantum terms in the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result shows that quantum fluctuations prohibit finding slow protocols that minimize both dissipation and fluctuations simultaneously, in contrast to classical slow processes. Instead, we develop a quantum geometric framework to find processes with an optimal trade-off between the two quantities.

8.
Entropy (Basel) ; 20(3)2018 Mar 16.
Article in English | MEDLINE | ID: mdl-33265291

ABSTRACT

The Leggett-Garg inequalities serve to test whether or not quantum correlations in time can be explained within a classical macrorealistic framework. We apply this test to thermodynamics and derive a set of Leggett-Garg inequalities for the statistics of fluctuating work done on a quantum system unitarily driven in time. It is shown that these inequalities can be violated in a driven two-level system, thereby demonstrating that there exists no general macrorealistic description of quantum work. These violations are shown to emerge within the standard Two-Projective-Measurement scheme as well as for alternative definitions of fluctuating work that are based on weak measurement. Our results elucidate the influences of temporal correlations on work extraction in the quantum regime and highlight a key difference between quantum and classical thermodynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...