Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Vaccines ; 7(1): 130, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36310317

ABSTRACT

Development of an effective vaccine for Mycoplasma pneumoniae has been hindered by reports of Vaccine Enhanced Disease (VED) in test subjects vaccinated and challenged in studies conducted in the 1960s. The exact mechanism of disease exacerbation has yet to be fully described, but host immune responses to Lipid-Associated Membrane Proteins (LAMPs) lipoprotein lipid moieties have been implicated. LAMPs-induced exacerbation appears to involve helper T cell recall responses, due in part to their influence on neutrophil recruitment and subsequent inflammatory responses in the lung. Herein, we characterized the functions of host B cell responses to M. pneumoniae LAMPs and delipidated-LAMPs (dLAMPs) by conducting passive transfer and B cell depletion studies to assess their contribution to disease exacerbation or protection using a BALB/c mouse model. We found that antibody responses to M. pneumoniae LAMPs and dLAMPs differ in magnitude, but not in isotype or subclass. Passive transfer, dLAMP denaturation, and monoclonal antibody studies indicate that antibodies do not cause VED, but do appear to contribute to control of bacterial loads in the lungs. Depletion of B cells prior to LAMPs-vaccination results in significantly enhanced pathology in comparison to B cell competent controls, suggesting a possible regulatory role of B cells distinct from antibody secretion. Taken together, our findings suggest that B cell antibody responses to M. pneumoniae contribute to, but are insufficient for protection against challenge on their own, and that other functional properties of B cells are necessary to limit exacerbation of disease in LAMPs-vaccinated mice after infection.

2.
NPJ Vaccines ; 7(1): 86, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35906257

ABSTRACT

Bacterial lipoproteins are an often-underappreciated class of microbe-associated molecular patterns with potent immunomodulatory activity. We previously reported that vaccination of BALB/c mice with Mycoplasma pneumoniae (Mp) lipid-associated membrane proteins (LAMPs) resulted in lipoprotein-dependent vaccine enhanced disease after challenge with virulent Mp, though the immune responses underpinning this phenomenon remain poorly understood. Herein, we report that lipoprotein-induced VED in a mouse model is associated with elevated inflammatory cytokines TNF-α, IL-1ß, IL-6, IL-17A, and KC in lung lavage fluid and with suppurative pneumonia marked by exuberant neutrophilia in the pulmonary parenchyma. Whole-lung-digest flow cytometry and RNAScope analysis identified multiple cellular sources for IL-17A, and the numbers of IL-17A producing cells were increased in LAMPs-vaccinated/Mp-challenged animals compared to controls. Specific IL-17A or neutrophil depletion reduced disease severity in our VED model-indicating that Mp lipoproteins induce VED in an IL-17A-dependent manner and through exuberant neutrophil recruitment. IL-17A neutralization reduced levels of TNF-α, IL-1ß, IL-6, and KC, indicating that IL-17A preceded other inflammatory cytokines. Surprisingly, we found that IL-17A neutralization impaired bacterial clearance, while neutrophil depletion improved it-indicating that, while IL-17A appears to confer both maladaptive and protective responses, neutrophils play an entirely maladaptive role in VED. Given that lipoproteins are found in virtually all bacteria, the potential for lipoprotein-mediated maladaptive inflammatory responses should be taken into consideration when developing vaccines against bacterial pathogens.

4.
Food Sci Technol Bull ; 2: 71-81, 2005.
Article in English | MEDLINE | ID: mdl-19844590

ABSTRACT

Extracts of leaves from the tea plant Camellia sinensis contain polyphenolic components with activity against a wide spectrum of microbes. Studies conducted over the last 20 years have shown that the green tea polyphenolic catechins, in particular (-)-epigallocatechin gallate (EGCg) and (-)-epicatechin gallate (ECg), can inhibit the growth of a wide range of Gram-positive and Gram-negative bacterial species with moderate potency. Evidence is emerging that these molecules may be useful in the control of common oral infections, such as dental caries and periodontal disease. Sub-inhibitory concentrations of EGCg and ECg can suppress the expression of bacterial virulence factors and can reverse the resistance of the opportunistic pathogen Staphylococcus aureus to beta-lactam antibiotics. For example, relatively low concentrations of ECg can sensitize methicillin-resistant S. aureus (MRSA) clinical isolates to levels of oxacillin that can be readily achieved in clinical practice. Catechin gallates such as ECg intercalate into phopsholipid bilayers and it is likely that they affect both virulence and antibiotic resistance by perturbing the function of key processes associated with the bacterial cytoplasmic membrane.

5.
Int J Antimicrob Agents ; 24(4): 374-80, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15380264

ABSTRACT

Epicatechin gallate (ECg), a component of green tea with weak activity against Staphylococcus aureus, reduces oxacillin resistance in methicillin-resistant S. aureus at concentrations below the MIC. Because catechins bind to artificial lipid bilayers, we investigated whether the anti-staphylococcal activity of catechins could be improved by increasing their capacity to interact with the cytoplasmic membrane. Substitution of the gallate group of ECg with 3-O-acyl chains of varying lengths (C(4)-C(18)) led to enhanced anti-staphylococcal activity with chain lengths of C(8) (octanoyl) and C(10) (decanoyl). 3-O-octanoyl catechin was bactericidal against MRSA as the result of membrane damage. 3-O-acyl catechins tested at a 1/4 MIC did not reduce the oxacillin MIC greater than two-fold. 3-O-acyl catechins warrant further investigation as anti-staphylococcal agents.


Subject(s)
Catechin/analogs & derivatives , Catechin/pharmacology , Drug Resistance, Bacterial , Oxacillin/pharmacology , Staphylococcus aureus/drug effects , Acylation , Catechin/chemistry , Drug Resistance, Multiple , Kinetics , Microbial Sensitivity Tests , Staphylococcus aureus/cytology
6.
Int J Antimicrob Agents ; 23(5): 462-7, 2004 May.
Article in English | MEDLINE | ID: mdl-15120724

ABSTRACT

Aqueous extracts of Japanese green tea (Camellia sinensis) are able to reverse beta-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA). We have attributed the capacity to reverse oxacillin resistance in the homogeneous PBP2a producer BB568 and in EMRSA-16 to (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG). Minimum inhibitory concentration (MIC) values for oxacillin were reduced from 256 and 512 to 1-4 mg/l, respectively, in the presence of these polyphenols. In addition, (-)-epigallocatechin gallate (EGCG) had a moderate capacity to modulate oxacillin activity against S. aureus BB568, but none against EMRSA-16. ECG, CG and EGCG increased the sensitivity of EMRSA-15 to oxacillin. The gallate moiety was essential for the oxacillin-modulating activity of ECG, as both (-)-epicatechin and (-)-epicatechin-3-cyclohexylcarboxylate were unable to reverse resistance to oxacillin. Gallic acid and three alkyl gallates (methyl gallate, propyl gallate, and octyl gallate) did not modulate beta-lactam resistance in MRSA. Octyl gallate exhibited direct antibacterial activity against S. aureus BB568 (16 mg/l). Modulation of beta-lactam resistance by ECG significantly enhanced the activities of flucloxacillin and the carbapenem antibiotics imipenem and meropenem against 40 MRSA isolates, with MIC(90) values for the antibiotics reduced to the susceptibility breakpoint or below. Consequently, EGCG, CG and, particularly, ECG warrant further investigation as agents to combat beta-lactam resistance in S. aureus.


Subject(s)
Catechin/analogs & derivatives , Catechin/pharmacology , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Oxacillin/pharmacology , Staphylococcus aureus/drug effects , beta-Lactam Resistance/drug effects , Anti-Bacterial Agents/pharmacology , Catechin/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Gallic Acid/chemistry , Microbial Sensitivity Tests , Phenols/chemistry , Phenols/pharmacology , Polyphenols , Propyl Gallate/chemistry , Propyl Gallate/pharmacology , Staphylococcus aureus/genetics
7.
Pharmacotherapy ; 23(11): 1497-507, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14620395

ABSTRACT

Many beta-lactam antimicrobials were developed between the 1960s and 1980s, with continuing development driven by the emergence of microbial resistance. Penems form a discrete class of beta-lactams that comprises structural hybrids of penicillins (penams) and cephalosporins (cephems). The chemistry and microbiology of the representative penems MEN 10700, ritipenem, CGP 31608, sulopenem, BRL 42715, and faropenem are reviewed. Particular emphasis is placed on faropenem, which is in late clinical development.


Subject(s)
Lactams , beta-Lactams/chemistry , beta-Lactams/classification , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Animals , Drug Resistance, Microbial/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...