Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Methods Mol Biol ; 2803: 61-74, 2024.
Article in English | MEDLINE | ID: mdl-38676885

ABSTRACT

Testing drugs in vivo and in vitro have been essential elements for the discovery of new therapeutics. Due to the recent advances in in vitro cell culture models, such as human-induced pluripotent stem cell-derived cardiomyocytes and 3D multicell type organoid culture methods, the detection of adverse cardiac events prior to human clinical trials has improved. However, there are still numerous therapeutics whose adverse cardiac effects are not detected until human trials due to the inability of these cell cultures to fully model the complex multicellular organization of an intact human myocardium. Cardiac tissue slices are a possible alternative solution. Myocardial slices are a 300-micron thin snapshot of the myocardium, capturing a section of the adult heart in a 1 × 1 cm section. Using a culture method that incorporates essential nutrients and electrical stimulation, tissue slices can be maintained in culture for 6 days with full viability and functionality. With the addition of mechanical stimulation and humoral cues, tissue slices can be cultured for 12 days. Here we provide detailed methods for how to culture cardiac tissue slices under continuous mechanical stimulation in the cardiac tissue culture model (CTCM) device. The CTCM incorporates four essential factors for maintaining tissue slices in culture for 12 days: mechanical stimulation, electrical stimulation, nutrients, and humoral cues. The CTCM can also be used to model disease conditions, such as overstretch-induced cardiac hypertrophy. The versatility of the CTCM illustrates its potential to be a medium-throughput screening platform for personalized drug testing.


Subject(s)
Myocardium , Myocytes, Cardiac , Tissue Culture Techniques , Humans , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Tissue Culture Techniques/methods , Animals , Heart/physiology , Electric Stimulation , Stress, Mechanical
2.
Res Sq ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076903

ABSTRACT

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity, which leads to progressive heart failure. Calcium (Ca2+) is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. A drug screen targeting proteins involved in CM calcium cycling in human embryonic stem cell-derived cardiac organoids (hCOs) revealed that only the inhibition of L-Type Calcium Channel (LTCC), but not other Ca2+ regulatory proteins (SERCA or RYR), induced the CM cell cycle. Furthermore, overexpression of Ras-related associated with Diabetes (RRAD), an endogenous inhibitor of LTCC, induced CM cell cycle activity in vitro, in human cardiac slices, and in vivo. Mechanistically, LTCC inhibition by RRAD induces the cell cycle in CMs by modulating calcineurin activity and translocating Hoxb13 to the CM nucleus. Together, this represents a robust pathway for regenerative strategies.

3.
Br J Pharmacol ; 180(24): 3271-3289, 2023 12.
Article in English | MEDLINE | ID: mdl-37547998

ABSTRACT

BACKGROUND AND PURPOSE: Myocardial infarction (MI) is the leading cause of mortality globally due in part to the limited ability of cardiomyocytes (CMs) to regenerate. Recently, we demonstrated that overexpression of four-cell cycle factors, CDK1, CDK4, cyclin B1 and cyclin D1 (4F), induced cell division in ~20% of the post-mitotic CMs overexpressed 4F. The current study aims to identify a small molecule that augments 4F-induced CM cycle induction. EXPERIMENTAL APPROACH, KEY RESULTS: Screening of small molecules with a potential to augment 4F-induced cell-cycle induction in 60-day-old mature human induced pluripotent cardiomyocytes (hiPS-CMs) revealed N-(4,6-Dimethylpyridin-2-yl)-4-(pyridine-4-yl)piperazine-1-carbothioamide (NDPPC), which activates cell cycle progression in 4F-transduced hiPS-CMs. Autodock tool and Autodock vina computational methods showed that NDPPC has a potential interaction with the binding site at the human p38⍺ mitogen-activated protein kinase (p38⍺ MAP kinase), a critical negative regulator of the mammalian cell cycle. A p38 MAP kinase activity assay showed that NDPPC inhibits p38⍺ with 5-10 times lower IC50 compared to the other P38 isoforms in a dose-dependent manner. Overexpression of p38⍺ MAP kinase in CMs inhibited 4F cell cycle induction, and treatment with NDPPC reversed the cell cycle inhibitory effect. CONCLUSION AND IMPLICATIONS: NDPPC is a novel inhibitor for p38 MAP kinase and is a promising drug to augment CM cell cycle response to the 4F. NDPPC could become an adjunct treatment with other cell cycle activators for heart failure treatment.


Subject(s)
Enzyme Inhibitors , Myocytes, Cardiac , Animals , Humans , Myocytes, Cardiac/metabolism , Enzyme Inhibitors/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Cell Cycle , Cell Division , p38 Mitogen-Activated Protein Kinases/metabolism , Mammals/metabolism
4.
iScience ; 26(6): 106970, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37324527

ABSTRACT

Despite the development of clinical treatments, heart failure remains the leading cause of mortality. We observed that p21-activated kinase 3 (PAK3) was augmented in failing human and mouse hearts. Furthermore, mice with cardiac-specific PAK3 overexpression exhibited exacerbated pathological remodeling and deteriorated cardiac function. Myocardium with PAK3 overexpression displayed hypertrophic growth, excessive fibrosis, and aggravated apoptosis following isoprenaline stimulation as early as two days. Mechanistically, using cultured cardiomyocytes and human-relevant samples under distinct stimulations, we, for the first time, demonstrated that PAK3 acts as a suppressor of autophagy through hyper-activation of the mechanistic target of rapamycin complex 1 (mTORC1). Defective autophagy in the myocardium contributes to the progression of heart failure. More importantly, PAK3-provoked cardiac dysfunction was mitigated by administering an autophagic inducer. Our study illustrates a unique role of PAK3 in autophagy regulation and the therapeutic potential of targeting this axis for heart failure.

5.
Heliyon ; 9(4): e14952, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123894

ABSTRACT

Diabetes is a metabolic disorder with an increased risk of developing heart failure. Inflammation and damaged vasculature are the cardinal features of diabetes-induced cardiac damage. Moreover, systemic metabolic stress triggers discordant intercellular communication, thus culminating in cardiac dysfunction. Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone transducing cellular signals via fibroblast growth factor receptor 1 (FGFR1) and its co-receptor beta-klotho (ß-KL). This study first demonstrated a decreased expression or activity of FGFR1 and ß-KL in both human and mouse diabetic hearts. Reinforcing cardiac FGFR1 and ß-KL expression can alleviate pro-inflammatory response and endothelial dysfunction upon diabetic stress. Using proteomics, novel cardiomyocyte-derived anti-inflammatory and proangiogenic factors regulated by FGFR1-ß-KL signaling were identified. Although not exhaustive, this study provides a unique insight into the protective topology of the cardiac FGFR1-ß-KL signaling-mediated intercellular reactions in the heart in response to metabolic stress.

6.
Commun Biol ; 5(1): 934, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085302

ABSTRACT

There is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle. After 12 days in culture, this approach partially improved the viability of heart slices but did not completely maintain their structural integrity. Therefore, following small molecule screening, we found that the incorporation of 100 nM tri-iodothyronine (T3) and 1 µM dexamethasone (Dex) into our culture media preserved the microscopic structure of the slices for 12 days. When combined with T3/Dex treatment, the CTCM system maintained the transcriptional profile, viability, metabolic activity, and structural integrity for 12 days at the same levels as the fresh heart tissue. Furthermore, overstretching the cardiac tissue induced cardiac hypertrophic signaling in culture, which provides a proof of concept for the ability of the CTCM to emulate cardiac stretch-induced hypertrophic conditions. In conclusion, CTCM can emulate cardiac physiology and pathophysiology in culture for an extended time, thereby enabling reliable drug screening.


Subject(s)
Biomimetics , Heart , Cardiomegaly , Culture Media , Humans , Systole
7.
Prev Vet Med ; 204: 105670, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35594605

ABSTRACT

Combinations of 2 nucleic acid extractions and 3 Mycoplasma hyopneumoniae (MHP) PCRs (namely Protocol 1, 2, 3, and 4) were compared in terms of the probability of detecting DNA in pen-based oral fluid samples as a function of within-pen MHP prevalence. Oral fluid samples were created by randomly assigning 39 7-week old pigs to one of 5 pens, i.e., negative control pen (3 pigs) and 4 pens of 9 pigs each that differed in the proportion of MHP-inoculated pigs (1, 3, 6, or 9). Deep tracheal swabs were collected twice weekly to establish individual pig MHP infection status and derive within-pen prevalence estimation. On DPI 3, tracheal swabs from 15 of 19 inoculated pigs were MHP DNA positive. Oral fluids (n = 320) were collected daily from - 4 to 59 days post inoculation (DPI). Using a piecewise exponential model to account for within-pen transmission dynamics followed by a mixed-effect logistic regression, the probability of detecting MHP DNA in oral fluids was positively associated with within-pen prevalence (P < 0.0001) and differed among test protocols. MHP DNA was detected in 173 oral fluid samples with Protocol 3 versus 148, 134, and 101 with Protocols 4, 2, and 1, respectively. At 100% within-pen prevalence, the probability of detecting MHP DNA in oral fluids was highest using Protocol 3 (95.7%), followed by Protocols 4 (70.1%), 2 (60.1%), and 1 (34.0%). The fact that PCR protocols performed differently suggests that further improvements in extraction methods and MHP PCRs are possible. In the field, the dynamics of MHP infections should be taken into account if using oral fluid samples in surveillance.


Subject(s)
Mycoplasma hyopneumoniae , Pneumonia of Swine, Mycoplasmal , Swine Diseases , Animals , Mycoplasma hyopneumoniae/genetics , Pneumonia of Swine, Mycoplasmal/diagnosis , Pneumonia of Swine, Mycoplasmal/epidemiology , Prevalence , Probability , Swine , Swine Diseases/diagnosis
8.
iScience ; 25(3): 103973, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35281739

ABSTRACT

Myocardial inflammation contributes to cardiomyopathy in diabetic patients through incompletely defined underlying mechanisms. In both human and time-course experimental samples, diabetic hearts exhibited abnormal ER, with a maladaptive shift over time in rodents. Furthermore, as a cardiac ER dysfunction model, mice with cardiac-specific p21-activated kinase 2 (PAK2) deletion exhibited heightened myocardial inflammatory response in diabetes. Mechanistically, maladaptive ER stress-induced CCAAT/enhancer-binding protein homologous protein (CHOP) is a novel transcriptional regulator of cardiac high-mobility group box-1 (HMGB1). Cardiac stress-induced release of HMGB1 facilitates M1 macrophage polarization, aggravating myocardial inflammation. Therapeutically, sequestering the extracellular HMGB1 using glycyrrhizin conferred cardioprotection through its anti-inflammatory action. Our findings also indicated that an intact cardiac ER function and protective effects of the antidiabetic drug interdependently attenuated the cardiac inflammation-induced dysfunction. Collectively, we introduce an ER stress-mediated cardiomyocyte-macrophage link, altering the macrophage response, thereby providing insight into therapeutic prospects for diabetes-associated cardiac dysfunction.

9.
Cardiovasc Eng Technol ; 13(1): 170-180, 2022 02.
Article in English | MEDLINE | ID: mdl-34402037

ABSTRACT

PURPOSE: Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. METHODS: In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. RESULTS: The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. CONCLUSION: This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.


Subject(s)
Artificial Intelligence , Myocytes, Cardiac , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
10.
Front Pharmacol ; 12: 617922, 2021.
Article in English | MEDLINE | ID: mdl-33613292

ABSTRACT

Translational research in the cardiovascular field is hampered by the unavailability of cardiac models that can recapitulate organ-level physiology of the myocardium. Outside the body, cardiac tissue undergoes rapid dedifferentiation and maladaptation in culture. There is an ever-growing demand for preclinical platforms that allow for accurate, standardized, long-term, and rapid drug testing. Heart slices is an emerging technology that solves many of the problems with conventional myocardial culture systems. Heart slices are thin (<400 µm) slices of heart tissue from the adult ventricle. Several recent studies using heart slices have shown their ability to maintain the adult phenotype for prolonged periods in a multi cell-type environment. Here, we review the current status of cardiac culture systems and highlight the unique advantages offered by heart slices in the light of recent efforts in developing physiologically relevant heart slice culture systems.

11.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32877659

ABSTRACT

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Subject(s)
Cardiotoxicity , Cardiotoxins/adverse effects , Heart/drug effects , Models, Biological , Tissue Culture Techniques , Adult , Aged , Animals , Antineoplastic Agents/adverse effects , Apoptosis/drug effects , Doxorubicin/adverse effects , Female , Heart/physiology , Humans , Induced Pluripotent Stem Cells , Male , Middle Aged , Swine , Trastuzumab/adverse effects
12.
J Vis Exp ; (157)2020 03 20.
Article in English | MEDLINE | ID: mdl-32250357

ABSTRACT

Many novel drugs fail in clinical studies due to cardiotoxic side effects as the currently available in vitro assays and in vivo animal models poorly predict human cardiac liabilities, posing a multi-billion-dollar burden on the pharmaceutical industry. Hence, there is a worldwide unmet medical need for better approaches to identify drug cardiotoxicity before undertaking costly and time consuming 'first in man' trials. Currently, only immature cardiac cells (human induced pluripotent stem cell-derived cardiomyocytes [hiPSC-CMs]) are used to test therapeutic efficiency and drug toxicity as they are the only human cardiac cells that can be cultured for prolonged periods required to test drug efficacy and toxicity. However, a single cell type cannot replicate the phenotype of the complex 3D heart tissue which is formed of multiple cell types. Importantly, the effect of drugs needs to be tested on adult cardiomyocytes, which have different characteristics and toxicity responses compared to immature hiPSC-CMs. Culturing human heart slices is a promising model of intact human myocardium. This technology provides access to a complete multicellular system that mimics the human heart tissue and reflects the physiological or pathological conditions of the human myocardium. Recently, through optimization of the culture media components and the culture conditions to include continuous electrical stimulation at 1.2 Hz and intermittent oxygenation of the culture medium, we developed a new culture system setup that preserves viability and functionality of human and pig heart slices for 6 days in culture. In the current protocol, we are detailing the method for slicing and culturing pig heart as an example. The same protocol is used to culture slices from human, dog, sheep, or cat hearts. This culture system has the potential to become a powerful predictive human in situ model for acute cardiotoxicity testing that closes the gap between preclinical and clinical testing results.


Subject(s)
Cardiotoxicity , Heart/drug effects , Organ Culture Techniques , Animals , Cells, Cultured , Humans , Models, Animal , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Sheep , Swine
13.
Am J Physiol Heart Circ Physiol ; 318(4): H801-H815, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32057252

ABSTRACT

DNA damage accrued in induced pluripotent stem cell (iPSC)-derived cardiomyocytes during in vitro culture practices lessens their therapeutic potential. We determined whether DNA-damage-free iPSCs (DdF-iPSCs) can be selected using stabilization of p53, a transcription factor that promotes apoptosis in DNA-damaged cells, and differentiated them into functionally competent DdF cardiomyocytes (DdF-CMs). p53 was activated using Nutlin-3a in iPSCs to selectively kill the DNA-damaged cells, and the stable DdF cells were cultured further and differentiated into CMs. Both DdF-iPSCs and DdF-CMs were then characterized. We observed a significant decrease in the expression of reactive oxygen species and DNA damage in DdF-iPSCs compared with control (Ctrl) iPSCs. Next-generation RNA sequencing and Ingenuity Pathway Analysis revealed improved molecular, cellular, and physiological functions in DdF-iPSCs. The differentiated DdF-CMs had a compact beating frequency between 40 and 60 beats/min accompanied by increased cell surface area. Additionally, DdF-CMs were able to retain the improved molecular, cellular, and physiological functions after differentiation from iPSCs, and, interestingly, cardiac development network was prominent compared with Ctrl-CMs. Enhanced expression of various ion channel transcripts in DdF-CMs implies DdF-CMs are of ventricular CMs and mature compared with their counterparts. Our results indicated that DdF-iPSCs could be selected through p53 stabilization using a small-molecule inhibitor and differentiated into ventricular DdF-CMs with fine-tuned molecular signatures. These iPSC-derived DdF-CMs show immense clinical potential in repairing injured myocardium.NEW & NOTEWORTHY Culture-stress-induced DNA damage in stem cells lessens their performance. A robust small-molecule-based approach, by stabilizing/activating p53, to select functionally competent DNA-damage-free cells from a heterogeneous population of cells is demonstrated. This protocol can be adopted by clinics to select DNA-damage-free cells before transplanting them to the host myocardium. The intact DNA-damage-free cells exhibited with fine-tuned molecular signatures and improved cellular functions. DNA-damage-free cardiomyocytes compared with control expressed superior cardiomyocyte functional properties, including, but not limited to, enhanced ion channel signatures. These DNA-intact cells would better engraft, survive, and, importantly, improve the cardiac function of the injured myocardium.


Subject(s)
Cell Differentiation , DNA Damage , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Cells, Cultured , Cellular Reprogramming Techniques/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
Animals (Basel) ; 9(12)2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31847350

ABSTRACT

Bermudagrass (Cynodon dactylon) and other warm-season grasses are known for their increased fiber concentrations and reduced digestibility relative to cool-season grasses and legumes. This study investigated the digestive characteristics and passage kinetics of three maturities of Coastal bermudagrass hay. A 5 × 5 Latin square design experiment was used to compare the digestion of five hays: alfalfa (Medicago sativa, ALF), orchardgrass (Dactylis glomerata, ORCH), and Coastal bermudagrass harvested at 4 (CB 4), 6 (CB 6), and 8 weeks of regrowth (CB 8). Horses were fed cobalt-ethylenediaminetetraacetic acid (Co-EDTA) and ytterbium (Yb) labeled neutral detergent fiber (NDF) before an 84-h total fecal collection to determine digesta retention time. Dry matter digestibility was greatest for ALF (62.1%) and least for CB 6 (36.0%) and CB 8 diets (36.8%, SEM = 2.1; p < 0.05). Mean retention time was longer (p < 0.05) for Coastal bermudagrass (particulate 31.3 h, liquid 25.3 h) compared with ORCH and ALF (28.0 h, SEM = 0.88 h; 20.7 h, SEM = 0.70 h). Further evaluation of digesta passage kinetics through mathematical modeling indicated ALF had distinct parameters compared to the other diets. Differences in digestive variables between forage types are likely a consequence of fiber physiochemical properties, warranting further investigation on forage fiber and digestive health.

16.
IEEE Trans Biomed Eng ; 66(12): 3436-3443, 2019 12.
Article in English | MEDLINE | ID: mdl-30892197

ABSTRACT

OBJECTIVE: Cardiovascular research and regenerative strategies have been significantly limited by the lack of relevant cell culture models that can recreate complex hemodynamic stresses associated with pressure-volume changes in the heart. METHODS: To address this issue, we designed a biomimetic cardiac tissue chip (CTC) model where encapsulated cardiac cells can be cultured in three-dimensional (3-D) fibres and subjected to hemodynamic loading to mimic pressure-volume changes seen in the left ventricle. These 3-D fibres are suspended within a microfluidic chamber between two posts and integrated within a flow loop. Various parameters associated with heart function, like heart rate, peak-systolic pressure, end-diastolic pressure and volume, end-systolic pressure and volume, and duration ratio between systolic and diastolic, can all be precisely manipulated, allowing culture of cardiac cells under developmental, normal, and disease states. RESULTS: We describe two examples of how the CTC can significantly impact cardiovascular research by reproducing the pathophysiological mechanical stresses associated with pressure overload and volume overload. Our results using H9c2 cells, a cardiomyogenic cell line, clearly show that culture within the CTC under pathological hemodynamic loads accurately induces morphological and gene expression changes, similar to those seen in both hypertrophic and dilated cardiomyopathy. Under pressure overload, the cells within the CTC see increased hypertrophic remodeling and fibrosis, whereas cells subject to prolonged volume overload experience significant changes to cellular aspect ratio through thinning and elongation of the engineered tissue. CONCLUSIONS: These results demonstrate that the CTC can be used to create highly relevant models where hemodynamic loading and unloading are accurately reproduced for cardiovascular disease modeling.


Subject(s)
Cardiovascular Diseases/physiopathology , Models, Cardiovascular , Myocardium/cytology , Tissue Array Analysis/instrumentation , Tissue Culture Techniques/instrumentation , Animals , Cells, Cultured , Equipment Design , Fibroblasts/cytology , Heart/physiology , Rats , Tissue Array Analysis/methods , Tissue Culture Techniques/methods
17.
Health Psychol ; 38(3): 196-205, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30762399

ABSTRACT

OBJECTIVE: Nearly 80% of cancer patients struggle with insomnia, which is associated with decreased heart rate variability (HRV) and quality of life (QOL). The aim of this secondary analysis was to evaluate the possible effects of Brief Behavioral Therapy for Cancer-Related Insomnia (BBT-CI), delivered during chemotherapy visits, on QOL and HRV in patients with breast cancer (BC). METHOD: QOL and HRV data were obtained during a pilot clinical trial assessing the feasibility and effects of BBT-CI on insomnia. A total of 71 BC patients (mean age = 52.5 years) were randomly assigned to either BBT-CI or a healthy-eating control intervention (HEAL). BBT-CI and HEAL were delivered over 6 weeks (2 face-to-face sessions plus 4 phone calls) by trained staff at 4 National Cancer Institute-funded Community Oncology Research Program clinics. QOL was measured with the Functional Assessment of Cancer Therapy (FACT-G) and HRV with the Firstbeat device at baseline and after intervention. RESULTS: There were significant improvements in QOL after intervention for BBT-CI (FACT-G, p = .009; FACT-B, p = .016; ANCOVA) and 5-min supine HRV measures (SDNN, p = .005; rMSSD, p = .004; HF, p = .009; ANCOVA) compared with HEAL. CONCLUSIONS: Patients randomized to BBT-CI showed improvements in QOL and HRV, providing support for BBT-CI's possible benefit when delivered in the community oncology setting by trained staff. A more definitive efficacy trial of BBT-CI is currently being planned with sufficient statistical power to evaluate the intervention's clinical utility. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Subject(s)
Breast Neoplasms/pathology , Cognitive Behavioral Therapy , Sleep Initiation and Maintenance Disorders/therapy , Adult , Aged , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/psychology , Female , Heart Rate , Humans , Middle Aged , Polysomnography , Quality of Life , Sleep/physiology , Sleep Initiation and Maintenance Disorders/psychology , Time Factors
18.
J Vis Exp ; (143)2019 01 25.
Article in English | MEDLINE | ID: mdl-30735199

ABSTRACT

Stem and stem-cell-derived cells have immense potential as a regenerative therapy for various degenerative diseases. DNA is the storehouse of genetic data in all cells, including stem cells, and its integrity is fundamental to its regenerative ability. Stem cells undergo rapid propagation in labs to achieve the necessary numbers for transplantation. Accelerated cell growth leads to the loss of DNA integrity by accumulated metabolites, such as reactive oxygen, carbonyl, and alkylating agents. Transplanting these cells would result in poor engraftment and regeneration of the deteriorating organ. Moreover, transplanting DNA-damaged cells leads to mutations, DNA instability, cellular senescence, and possibly, life-threatening diseases such as cancer. Therefore, there is an immediate need for a quality control method to evaluate the cell's suitability for transplantation. Here, we provide step-by-step protocols for the assessment of the DNA integrity of stem cells prior to cell transplantation.


Subject(s)
Cell- and Tissue-Based Therapy/methods , DNA Damage , DNA/chemistry , Heart Diseases/therapy , Myocytes, Cardiac/cytology , Stem Cell Transplantation/standards , Stem Cells/cytology , Cell Proliferation , Cellular Senescence , DNA/analysis , DNA/genetics , Humans
19.
Biotechniques ; 65(4): 224-226, 2018 10.
Article in English | MEDLINE | ID: mdl-30284939

ABSTRACT

High-throughput protein expression platforms are increasingly used to produce proteins for many applications: to support studies in structure/function, regulation and proteomics, as well as for direct use as potential biotherapeutic agents for medical applications. Here we describe a device that we refer to as the flask density reader (FDR) consisting of a through-beam laser and sensor, and a customized culture flask-receiving nest. The FDR has been integrated onto GNF System™'s automated protein expression platform to enable rapid, noninvasive, fully automated spectrophotometric determination of cell densities in suspension mammalian cell cultures. The FDR reduces the risk of culture contamination from frequent flask sampling and greatly reduces the time and effort needed to count cells using off-line methods.


Subject(s)
Cell Count/instrumentation , Cell Culture Techniques/instrumentation , Animals , CHO Cells , Cell Count/methods , Cell Culture Techniques/methods , Cell Line , Cricetulus , Equipment Design , Humans , Lasers
20.
Cells Tissues Organs ; 206(1-2): 82-94, 2018.
Article in English | MEDLINE | ID: mdl-30840966

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived cardio-myocytes (hiPSC-CMs) hold great promise for cardiovascular disease modeling and regenerative medicine. However, these cells are both structurally and functionally -immature, primarily due to their differentiation into cardiomyocytes occurring under static culture which only reproduces biomolecular cues and ignores the dynamic hemo-dynamic cues that shape early and late heart development during cardiogenesis. To evaluate the effects of hemodynamic stimuli on hiPSC-CM maturation, we used the biomimetic cardiac tissue model to reproduce the hemodynamics and pressure/volume changes associated with heart development. Following 7 days of gradually increasing stimulation, we show that hemodynamic loading results in (a) enhanced alignment of the cells and extracellular matrix, (b) significant increases in genes associated with physiological hypertrophy, (c) noticeable changes in sarcomeric organization and potential changes to cellular metabolism, and (d) a significant increase in fractional shortening, suggestive of a positive force frequency response. These findings suggest that culture of hiPSC-CMs under conditions that accurately reproduce hemodynamic cues results in structural orga-nization and molecular signaling consistent with organ growth and functional maturation.


Subject(s)
Cell Culture Techniques/instrumentation , Cell Differentiation , Hemodynamics , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Biomimetics/instrumentation , Biomimetics/methods , Cell Culture Techniques/methods , Cell Line , Equipment Design , Humans , Myocytes, Cardiac/ultrastructure , Sarcomeres/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...