Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(31): eaba2331, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32832680

ABSTRACT

Using theory and experiments, we study the interface between two immiscible domains in a colloidal membrane composed of rigid rods of different lengths. Geometric considerations of rigid rod packing imply that a domain of sufficiently short rods in a background membrane of long rods is more susceptible to twist than the inverse structure, a long-rod domain in a short-rod membrane. The midplane tilt at the interdomain edge forces splay, which, in turn, manifests as spontaneous edge curvature with energetics controlled by the length asymmetry of constituent rods. A thermodynamic model of such tilt-curvature coupling at interdomain edges explains a number of experimental observations, including annularly shaped long-rod domains, and a nonmonotonic dependence of edge twist on domain radius. Our work shows how coupling between orientational and compositional degrees of freedom in two-dimensional fluids gives rise to complex shapes of fluid domains, analogous to shape transitions in 3D fluid vesicles.

2.
Proc Natl Acad Sci U S A ; 116(32): 15792-15801, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31320590

ABSTRACT

Membrane-mediated particle interactions depend both on the properties of the particles themselves and the membrane environment in which they are suspended. Experiments have shown that chiral rod-like inclusions dissolved in a colloidal membrane of opposite handedness assemble into colloidal rafts, which are finite-sized reconfigurable droplets consisting of a large but precisely defined number of rods. We systematically tune the chirality of the background membrane and find that, in the achiral limit, colloidal rafts acquire complex structural properties and interactions. In particular, rafts can switch between 2 chiral states of opposite handedness, which alters the nature of the membrane-mediated raft-raft interactions. Rafts with the same chirality have long-ranged repulsions, while those with opposite chirality acquire attractions with a well-defined minimum. Both attractive and repulsive interactions are qualitatively explained by a continuum model that accounts for the coupling between the membrane thickness and the local tilt of the constituent rods. These switchable interactions enable assembly of colloidal rafts into intricate higher-order architectures, including stable tetrameric clusters and "ionic crystallites" of counter-twisting domains organized on a binary square lattice. Furthermore, the properties of individual rafts, such as their sizes, are controlled by their complexation with other rafts. The emergence of these complex behaviors can be rationalized purely in terms of generic couplings between compositional and orientational order of fluids of rod-like elements. Thus, the uncovered principles might have relevance for conventional lipid bilayers, in which the assembly of higher-order structures is also mediated by complex membrane-mediated interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...