Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364991

ABSTRACT

Cryptococcus neoformans (Cn) is a pathogenic yeast that is the leading cause of fungal meningitis in immunocompromised patients. Various Cn virulence factors, such as the enzyme laccase and its product melanin, phospholipase, and capsular polysaccharide have been identified. During a screen of knockout mutants, the gene resistance to aminocholesterol 1 (RTA1) was identified, the function of which is currently unknown in Cn. Rta1 homologs in S. cerevisiae belong to a lipid-translocating exporter family of fungal proteins with transmembrane regions and confer resistance to the antimicrobial agent 7-aminocholesterol when overexpressed. To determine the role of RTA1 in Cn, the knock-out (rta1Δ) and reconstituted (rta1Δ+RTA1) strains were created and phenotypically tested. RTA1 was involved in resistance to 7-aminocholesterol, and also in exocyst complex component 3 (Sec6)-mediated secretion of urease, laccase, and the major capsule component, glucuronoxylomannan (GXM), which coincided with significantly smaller capsules in the rta1Δ and rta1Δ+RTA1 strains compared to the wild-type H99 strain. Furthermore, RTA1 expression was reduced in a secretory 14 mutant (sec14Δ) and increased in an RNAi Sec6 mutant. Transmission electron microscopy demonstrated vesicle accumulation inside the rta1Δ strain, predominantly near the cell membrane. Given that Rta1 is likely to be a transmembrane protein located at the plasma membrane, these data suggest that Rta1 may be involved in both secretion of various fungal virulence factors and resistance to 7-aminocholesterol in Cn.

2.
Appl Plant Sci ; 2(6)2014 Jun.
Article in English | MEDLINE | ID: mdl-25202629

ABSTRACT

PREMISE OF THE STUDY: Focused ion beam-scanning electron microscopy (FIB-SEM) combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. • METHODS: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. • RESULTS: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. • DISCUSSION: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...