Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nature ; 630(8016): 475-483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839958

ABSTRACT

Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.


Subject(s)
Aging , Brain , Cellular Senescence , Drosophila melanogaster , Lipid Metabolism , Mitochondria , Neuroglia , Animals , Female , Humans , Male , Aging/metabolism , Aging/pathology , Brain/metabolism , Brain/pathology , Brain/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/cytology , Fibroblasts/metabolism , Fibroblasts/pathology , Longevity , Mitochondria/metabolism , Mitochondria/pathology , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Transcription Factor AP-1/metabolism , Lipids , Inflammation/metabolism , Inflammation/pathology
2.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045344

ABSTRACT

Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells, through a mitochondria-regulated molecular circuit that connects the p53 tumor suppressor and cytoplasmic chromatin fragments (CCF), a driver of inflammation through the cGAS-STING pathway. Activation or inactivation of p53 by genetic and pharmacologic approaches showed that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), independent of its effects on cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 by pharmacological inhibition of MDM2 in old mice decreased features of SASP in liver, indicating a senomorphic role in vivo . Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53-CCF circuit in senescent cells that controls DNA repair, genome integrity and inflammatory SASP, and is a potential target for senomorphic healthy aging interventions.

3.
Cell ; 184(22): 5506-5526, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34715021

ABSTRACT

Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.


Subject(s)
Aging/metabolism , Cytoplasm/metabolism , DNA/metabolism , Disease , Animals , Humans , Micronucleus, Germline/metabolism , Retroelements/genetics
4.
Elife ; 102021 01 29.
Article in English | MEDLINE | ID: mdl-33512316

ABSTRACT

Senescent cells, damaged cells that permanently exit the cell cycle, play important roles in development, tissue homeostasis, and tumorigenesis. Although many of these roles are beneficial in acute responses to stress and damage, the persistent accumulation of senescent cells is associated with many chronic diseases through their proinflammatory senescence-associated secretory phenotype (SASP). SASP expression is linked to DNA damage; however, the mechanisms that control the SASP are incompletely understood. More recently, it has been shown that senescent cells shed fragments of nuclear chromatin into the cytoplasm, so called cytoplasmic chromatin fragments (CCF). Here, we provide an overview of the current evidence linking DNA damage to the SASP through the formation of CCF. We describe mechanisms of CCF generation and their functional role in senescent cells, with emphasis on therapeutic potential.


Subject(s)
Cellular Senescence , Chromatin/metabolism , DNA Damage , Senescence-Associated Secretory Phenotype , Cytoplasm/metabolism
5.
Genes Dev ; 34(5-6): 428-445, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32001510

ABSTRACT

Cellular senescence is a potent tumor suppressor mechanism but also contributes to aging and aging-related diseases. Senescence is characterized by a stable cell cycle arrest and a complex proinflammatory secretome, termed the senescence-associated secretory phenotype (SASP). We recently discovered that cytoplasmic chromatin fragments (CCFs), extruded from the nucleus of senescent cells, trigger the SASP through activation of the innate immunity cytosolic DNA sensing cGAS-STING pathway. However, the upstream signaling events that instigate CCF formation remain unknown. Here, we show that dysfunctional mitochondria, linked to down-regulation of nuclear-encoded mitochondrial oxidative phosphorylation genes, trigger a ROS-JNK retrograde signaling pathway that drives CCF formation and hence the SASP. JNK links to 53BP1, a nuclear protein that negatively regulates DNA double-strand break (DSB) end resection and CCF formation. Importantly, we show that low-dose HDAC inhibitors restore expression of most nuclear-encoded mitochondrial oxidative phosphorylation genes, improve mitochondrial function, and suppress CCFs and the SASP in senescent cells. In mouse models, HDAC inhibitors also suppress oxidative stress, CCF, inflammation, and tissue damage caused by senescence-inducing irradiation and/or acetaminophen-induced mitochondria dysfunction. Overall, our findings outline an extended mitochondria-to-nucleus retrograde signaling pathway that initiates formation of CCF during senescence and is a potential target for drug-based interventions to inhibit the proaging SASP.


Subject(s)
Cell Nucleus/pathology , Cellular Senescence/physiology , Chromatin/pathology , Cytoplasm/pathology , Mitochondria/pathology , Signal Transduction , Animals , Cell Nucleus/physiology , Gene Expression Regulation, Developmental/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Inflammation/physiopathology , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/physiology , Reactive Oxygen Species/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
6.
Cell Syst ; 10(2): 156-168.e5, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31982367

ABSTRACT

Caloric restriction (CR) improves survival in nonhuman primates and delays the onset of age-related morbidities including sarcopenia, which is characterized by the age-related loss of muscle mass and function. A shift in metabolism anticipates the onset of muscle-aging phenotypes in nonhuman primates, suggesting a potential role for metabolism in the protective effects of CR. Here, we show that CR induced profound changes in muscle composition and the cellular metabolic environment. Bioinformatic analysis linked these adaptations to proteostasis, RNA processing, and lipid synthetic pathways. At the tissue level, CR maintained contractile content and attenuated age-related metabolic shifts among individual fiber types with higher mitochondrial activity, altered redox metabolism, and smaller lipid droplet size. Biometric and metabolic rate data confirm preserved metabolic efficiency in CR animals that correlated with the attenuation of age-related muscle mass and physical activity. These data suggest that CR-induced reprogramming of metabolism plays a role in delayed aging of skeletal muscle in rhesus monkeys.


Subject(s)
Sarcopenia/prevention & control , Adult , Animals , Caloric Restriction , Humans , Macaca mulatta , Male , Molecular Medicine
7.
Curr Opin Endocr Metab Res ; 5: 37-44, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31406949

ABSTRACT

Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a) is a central regulator of metabolism that is poised at the intersection of myriad intracellular signaling pathways. In this brief update, we discuss regulation of PGC-1a at multiple levels, including transcriptional, post-transcriptional, and post-translational modifications. We discuss recently identified small molecule effectors of PGC-1a that offer translational potential and promise new insight into PGC-1a biology. We highlight novel mechanistic insights relating to PGC-1a's interactions with RNA to enhance transcription and potentially influence transcript processing. Finally, we place these exciting new data in the context of aging biology, offering PGC-1a as a candidate target with terrific potential in anti-aging interventions.

8.
Aging Cell ; 18(5): e12999, 2019 10.
Article in English | MEDLINE | ID: mdl-31267675

ABSTRACT

Deleterious changes in energy metabolism have been linked to aging and disease vulnerability, while activation of mitochondrial pathways has been linked to delayed aging by caloric restriction (CR). The basis for these associations is poorly understood, and the scope of impact of mitochondrial activation on cellular function has yet to be defined. Here, we show that mitochondrial regulator PGC-1a is induced by CR in multiple tissues, and at the cellular level, CR-like activation of PGC-1a impacts a network that integrates mitochondrial status with metabolism and growth parameters. Transcriptional profiling reveals that diverse functions, including immune pathways, growth, structure, and macromolecule homeostasis, are responsive to PGC-1a. Mechanistically, these changes in gene expression were linked to chromatin remodeling and RNA processing. Metabolic changes implicated in the transcriptional data were confirmed functionally including shifts in NAD metabolism, lipid metabolism, and membrane lipid composition. Delayed cellular proliferation, altered cytoskeleton, and attenuated growth signaling through post-transcriptional and post-translational mechanisms were also identified as outcomes of PGC-1a-directed mitochondrial activation. Furthermore, in vivo in tissues from a genetically heterogeneous mouse population, endogenous PGC-1a expression was correlated with this same metabolism and growth network. These data show that small changes in metabolism have broad consequences that arguably would profoundly alter cell function. We suggest that this PGC-1a sensitive network may be the basis for the association between mitochondrial function and aging where small deficiencies precipitate loss of function across a spectrum of cellular activities.


Subject(s)
Caloric Restriction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , 3T3-L1 Cells , Animals , Cells, Cultured , Cellular Senescence , Energy Metabolism , Mice , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
9.
Cell Rep ; 23(7): 1922-1931.e4, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768193

ABSTRACT

GSK3ß is a serine threonine kinase implicated in the progression of Alzheimer's disease. Although the role of GSK3ß in growth and pathology has been extensively studied, little is known about the metabolic consequences of GSK3ß manipulation, particularly in the brain. Here, we show that GSK3ß regulates mitochondrial energy metabolism in human H4 neuroglioma cells and rat PC12-derived neuronal cells and that inhibition of GSK3ß in mice in vivo alters metabolism in the hippocampus in a region-specific manner. We demonstrate that GSK3ß inhibition increases mitochondrial respiration and membrane potential and alters NAD(P)H metabolism. These metabolic effects are associated with increased PGC-1α protein stabilization, enhanced nuclear localization, and increased transcriptional co-activation. In mice treated with the GSK3ß inhibitor lithium carbonate, changes in hippocampal energy metabolism are linked to increased PGC-1α. These data highlight a metabolic role for brain GSK3ß and suggest that the GSK3ß/PGC-1α axis may be important in neuronal metabolic integrity.


Subject(s)
Brain/metabolism , Energy Metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Animals , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Hippocampus/metabolism , Humans , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , NAD/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , PC12 Cells , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Stability/drug effects , Rats
10.
Aging Cell ; 16(3): 497-507, 2017 06.
Article in English | MEDLINE | ID: mdl-28156058

ABSTRACT

Adipose tissue expansion has been associated with system-wide metabolic dysfunction and increased vulnerability to diabetes, cancer, and cardiovascular disease. A reduction in adiposity is a hallmark of caloric restriction (CR), an intervention that extends longevity and delays the onset of these same age-related conditions. Despite these parallels, the role of adipose tissue in coordinating the metabolism of aging is poorly defined. Here, we show that adipose tissue metabolism and secretory profiles change with age and are responsive to CR. We conducted a cross-sectional study of CR in adult, late-middle-aged, and advanced-aged mice. Adiposity and the relationship between adiposity and circulating levels of the adipose-derived peptide hormone adiponectin were age-sensitive. CR impacted adiposity but only levels of the high molecular weight isoform of adiponectin responded to CR. Activators of metabolism including PGC-1a, SIRT1, and NAMPT were differentially expressed with CR in adipose tissues. Although age had a significant impact on NAD metabolism, as detected by biochemical assay and multiphoton imaging, the impact of CR was subtle and related to differences in reliance on oxidative metabolism. The impact of age on circulating lipids was limited to composition of circulating phospholipids. In contrast, the impact of CR was detected in all lipid classes regardless of age, suggesting a profound difference in lipid metabolism. These data demonstrate that aspects of adipose tissue metabolism are life phase specific and that CR is associated with a distinct metabolic state, suggesting that adipose tissue signaling presents a suitable target for interventions to delay aging.


Subject(s)
Adiponectin/genetics , Adipose Tissue/metabolism , Adiposity/genetics , Aging/metabolism , Caloric Restriction , Lipids/blood , Adiponectin/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation, Developmental , Lipids/classification , Male , Mice , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism
11.
Aging Cell ; 15(1): 100-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26521867

ABSTRACT

The hippocampus is critical for cognition and memory formation and is vulnerable to age-related atrophy and loss of function. These phenotypes are attenuated by caloric restriction (CR), a dietary intervention that delays aging. Here, we show significant regional effects in hippocampal energy metabolism that are responsive to age and CR, implicating metabolic pathways in neuronal protection. In situ mitochondrial cytochrome c oxidase activity was region specific and lower in aged mice, and the impact of age was region specific. Multiphoton laser scanning microscopy revealed region- and age-specific differences in nicotinamide adenine dinucleotide (NAD)-derived metabolic cofactors. Age-related changes in metabolic parameters were temporally separated, with early and late events in the metabolic response to age. There was a significant regional impact of age to lower levels of PGC-1α, a master mitochondrial regulator. Rather than reversing the impact of age, CR induced a distinct metabolic state with decreased cytochrome c oxidase activity and increased levels of NAD(P)H. Levels of hippocampal PGC-1α were lower with CR, as were levels of GSK3ß, a key regulator of PGC-1α turnover and activity. Regional distribution and colocalization of PGC-1α and GSK3ß in mouse hippocampus was similar in monkeys. Furthermore, the impact of CR to lower levels of both PGC-1α and GSK3ß was also conserved. The studies presented here establish the hippocampus as a highly varied metabolic environment, reveal cell-type and regional specificity in the metabolic response to age and delayed aging by CR, and suggest that PGC-1α and GSK3ß play a role in implementing the neuroprotective program induced by CR.


Subject(s)
Aging/genetics , Caloric Restriction , Energy Metabolism/physiology , Heat-Shock Proteins/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Age Factors , Animals , Caloric Restriction/methods , Haplorhini , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...