Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Nutr ; 11: 1322201, 2024.
Article in English | MEDLINE | ID: mdl-38352704

ABSTRACT

Introduction: Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. Methods: Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussion: Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.

2.
Sci Rep ; 13(1): 19398, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938619

ABSTRACT

Staphylococcus aureus forms biofilms that cause considerable morbidity and mortality in patients who receive implanted devices such as prosthetics or fixator pins. An ideal surface for such medical devices would inhibit biofilm growth. Recently, it was reported that surface modification of stainless steel materials with carbon-infiltrated carbon nanotubes (CICNT) inhibits the growth of S. aureus biofilms. The purpose of this study was to investigate this antimicrobial effect on titanium materials with CICNT coated surfaces in a variety of surface morphologies and across a broader spectrum of S. aureus isolates. Study samples of CICNT-coated titanium, and control samples of bare titanium, a common implant material, were exposed to S. aureus. Viable bacteria were removed from adhered biofilms and quantified as colony forming units. Scanning electron microscopy was used to qualitatively analyze biofilms both before and after removal of cells. The CICNT surface was found to have significantly fewer adherent bacteria than bare titanium control surfaces, both via colony forming unit and microscopic analyses. This effect was most pronounced on CICNT surfaces with an average nanotube diameter of 150 nm, showing a 2.5-fold reduction in adherent bacteria. Since S. aureus forms different biofilm structures by isolate and by growth conditions, we tested 7 total isolates and found a significant reduction in the biofilm load in six out of seven S. aureus isolates tested. To examine whether the anti-biofilm effect was due to the structure of the nanotubes, we generated an unstructured carbon surface. Significantly more bacteria adhered to a nonstructured carbon surface than to the 150 nm CICNT surface, suggesting that the topography of the nanotube structure itself has anti-biofilm properties. The CICNT surface possesses anti-biofilm properties that result in fewer adherent S. aureus bacteria. These anti-biofilm properties are consistent across multiple isolates of S. aureus and are affected by nanotube diameter. The experiments performed in this study suggest that this effect is due to the nanostructure of the CICNT surface.


Subject(s)
Nanotubes, Carbon , Humans , Staphylococcus aureus , Titanium/pharmacology , Biofilms , Bone Nails
3.
mBio ; 14(5): e0214123, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37819109

ABSTRACT

IMPORTANCE: The respiratory picornavirus enterovirus D68 is a causative agent of acute flaccid myelitis, a childhood paralysis disease identified in the last decade. Poliovirus, another picornavirus associated with paralytic disease, is a fecal-oral virus that survives acidic environments when passing from host to host. Here, we follow up on our previous work showing a requirement for acidic intracellular compartments for maturation cleavage of poliovirus particles. Enterovirus D68 requires acidic vesicles for an earlier step, assembly, and maintenance of viral particles themselves. These data have strong implications for the use of acidification blocking treatments to combat enterovirus diseases.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Poliovirus , Humans , Child , Enterovirus D, Human/genetics , Capsid
4.
Elife ; 122023 10 18.
Article in English | MEDLINE | ID: mdl-37850626

ABSTRACT

Enterovirus D68 (EV-D68) is a re-emerging enterovirus that causes acute respiratory illness in infants and has recently been linked to Acute Flaccid Myelitis. Here, we show that the histone deacetylase, SIRT-1, is essential for autophagy and EV-D68 infection. Knockdown of SIRT-1 inhibits autophagy and reduces EV-D68 extracellular titers. The proviral activity of SIRT-1 does not require its deacetylase activity or functional autophagy. SIRT-1's proviral activity is, we demonstrate, mediated through the repression of endoplasmic reticulum stress (ER stress). Inducing ER stress through thapsigargin treatment or SERCA2A knockdown in SIRT-1 knockdown cells had no additional effect on EV-D68 extracellular titers. Knockdown of SIRT-1 also decreases poliovirus and SARS-CoV-2 titers but not coxsackievirus B3. In non-lytic conditions, EV-D68 is primarily released in an enveloped form, and SIRT-1 is required for this process. Our data show that SIRT-1, through its translocation to the cytosol, is critical to promote the release of enveloped EV-D68 viral particles.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Sirtuin 1 , Virus Activation , Humans , COVID-19 , Enterovirus/genetics , Enterovirus/physiology , Enterovirus D, Human/genetics , Enterovirus D, Human/physiology , Enterovirus Infections/genetics , Enterovirus Infections/physiopathology , Neuromuscular Diseases , Proviruses , SARS-CoV-2 , Viral Envelope/metabolism , Viral Envelope/physiology , Virus Activation/genetics , Virus Activation/physiology , Sirtuin 1/genetics , Sirtuin 1/physiology
5.
Nat Cancer ; 4(10): 1491-1507, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37723305

ABSTRACT

Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Acetyl Coenzyme A/metabolism , Cell Line, Tumor , Acetates/pharmacology , Acetates/therapeutic use , Acetates/metabolism , T-Lymphocytes/metabolism , Immunologic Factors , Tumor Microenvironment
6.
Autophagy ; 19(1): 112-125, 2023 01.
Article in English | MEDLINE | ID: mdl-35446171

ABSTRACT

Enterovirus D68 (EV-D68) is a respiratory pathogen associated with acute flaccid myelitis, a childhood paralysis disease. No approved vaccine or antiviral treatment exists against EV-D68. Infection with this virus induces the formation of autophagosomes to enhance its replication but blocks the downstream autophagosome- lysosome fusion steps. Here, we examined the impact of autophagy induction through starvation, either before (starvation before infection, SBI) or after (starvation after infection, SAI) EV-D68 infection. We showed that SAI, but not SBI, attenuated EV-D68 replication in multiple cell lines and abrogated the viral-mediated cleavage of host autophagic flux-related proteins. Furthermore, SAI induced autophagic flux during EV-D68 replication and prevented production of virus-induced membranes, which are required for picornavirus replication. Pharmacological inhibition of autophagic flux during SAI did not rescue EV-D68 titers. SAI had the same effect in multiple cell types, and restricted the replication of several medically relevant picornaviruses. Our results highlight the significance of autophagosomes for picornavirus replication and identify SAI as an attractive broad-spectrum anti-picornavirus strategy.Abbreviations: BAF: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CQ: chloroquine; CVB3: coxsackievirus B3; EV-D68: enterovirus D68; hpi: hour post-infection; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; NSP2B: nonstructural protein 2B; PV: poliovirus; RES: resveratrol; RV14: rhinovirus 14; SAI: starvation after infection; SBI: starvation before infection; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Myelitis , Humans , Autophagy , Autophagy-Related Proteins , Cell Line
7.
Virology ; 578: 117-127, 2023 01.
Article in English | MEDLINE | ID: mdl-36527930

ABSTRACT

Picornaviruses rearrange host cell membranes to facilitate their own replication. Here we investigate the Qbc SNARE, SNAP23, which is found at the plasma membrane and plays roles in exocytosis. We found that knockdown of SNAP23 expression inhibits virus replication but not release from cells. Knocking down SNAP23 inhibits viral RNA replication and synthesis of structural proteins. Normal cellular levels of SNAP23 are required for an early step in virus production, prior to or at the stage of virus RNA replication. We report that SNAP23 knockdown generates large, electron-light structures, and that infection of cells with these structures does not alter them, and those cells fail to generate viral RNA replication sites. We suggest that SNAP23 may play a role in maintaining membranes and lipids needed for generating virus replication organelles. Further investigation is needed to determine the precise role of this crucial SNARE protein in EV-D68 replication.


Subject(s)
Enterovirus D, Human , Cell Line , Cell Membrane/metabolism , Enterovirus D, Human/genetics , Membrane Fusion , Organelles , Virus Replication
8.
Br J Nutr ; 130(3): 411-416, 2023 08 14.
Article in English | MEDLINE | ID: mdl-36261434

ABSTRACT

Excess unabsorbed iron in the gastrointestinal tract may select for enteric pathogens and increase the incidence and severity of infectious disease. Aspergillus oryzae (Ao) is a filamentous fungus that has the ability to accumulate and store large amounts of iron, and when used as a supplement or fortificant, has similar absorption to ferrous sulphate (FeSO4) in humans. The objective of this study was to determine the effect of iron-enriched Ao (Ao iron) compared with FeSO4 on iron accumulation, growth and motility of the Gram-negative enteric pathogen, S. Typhimurium. S. Typhimurium was cultured in media containing no added iron or 1 µM elemental iron as either Ao iron or FeSO4. S. Typhimurium cultured with FeSO4 accumulated more iron than those cultured with Ao iron. Genes regulated by the iron-activated transcriptional repressor, Fur, did not differ between control and Ao iron, but decreased in S. Typhimurium cultured with FeSO4 compared with both groups. Growth of S. Typhimurium was greater when cultured with FeSO4 compared with Ao iron and control. S. Typhimurium swam faster, had greater acceleration and travelled further when cultured with FeSO4 compared with Ao iron and control; swim speed, acceleration and distance travelled did not differ between Ao iron and control. These findings provide evidence that Ao iron reduces the virulence of a common enteric pathogen in vitro. Further research is required to determine whether iron-enriched Ao is a suitable iron supplement to improve iron delivery in areas with a high infection burden.


Subject(s)
Aspergillus oryzae , Iron , Humans , Iron/pharmacology , Ferrous Compounds , Sulfates
9.
J Nutr ; 152(10): 2198-2208, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35906187

ABSTRACT

BACKGROUND: Short-term starvation and severe food deprivation (FD) reduce dietary iron absorption and restricts iron to tissues, thereby limiting the amount of iron available for erythropoiesis. These effects may be mediated by increases in the iron regulatory hormone hepcidin; however, whether mild to moderate FD has similar effects on hepcidin and iron homeostasis is not known. OBJECTIVES: To determine the effects of varying magnitudes and durations of FD on hepcidin and indicators of iron status in male and female mice. METHODS: Male and female C57BL/6J mice (14 wk old; n = 170) were randomly assigned to consume AIN-93M diets ad libitum (AL) or varying magnitudes of FD (10%, 20%, 40%, 60%, 80%, or 100%). FD was based on the average amount of food consumed by the AL males or females, and food was split into morning and evening meals. Mice were euthanized at 48 h and 1, 2, and 3 wk, and hepcidin and indicators of iron status were measured. Data were analyzed by Pearson correlation and one-way ANOVA. RESULTS: Liver hepcidin mRNA was positively correlated with the magnitude of FD at all time points (P < 0.05). At 3 wk, liver hepcidin mRNA increased 3-fold with 10% and 20% FD compared with AL and was positively associated with serum hepcidin (R = 0.627, P < 0.0001). Serum iron was reduced by ∼65% (P ≤ 0.01), and liver nonheme iron concentrations were ∼75% greater (P ≤ 0.01) with 10% and 20% FD for 3 wk compared with AL. Liver hepcidin mRNA at 3 wk was positively correlated with liver Bmp6 (R = 0.765, P < 0.0001) and liver gluconeogenic enzymes (R = >0.667, P < 0.05) but not markers of inflammation (P > 0.05). CONCLUSIONS: FD increases hepcidin in male and female mice and results in hypoferremia and tissue iron sequestration. These findings suggest that increased hepcidin with FD may contribute to the disturbances in iron homeostasis with undernutrition.


Subject(s)
Hepcidins , Starvation , Animals , Female , Food Deprivation , Hepcidins/genetics , Hormones , Iron , Iron, Dietary , Male , Mice , Mice, Inbred C57BL , RNA, Messenger
10.
Virology ; 563: 38-43, 2021 11.
Article in English | MEDLINE | ID: mdl-34416448

ABSTRACT

BST2/tetherin is a transmembrane protein with antiviral activity; it is synthesized following exposure to interferons, and restricts the release of budding virus particles by tethering them to the host cell membrane. We previously showed that BST2 is induced in primary neurons following measles virus (MV) infection or type I interferon; however, BST2 was dispensable for protection against challenge with neuron-restricted MV. Here, we define the contribution of BST-2 in neuronal MV infection. Surprisingly, and in contrast to its antiviral role in non-neuronal cells, murine BST2 promotes MV infection in brains of permissive mice and in primary neuron cultures. Moreover, BST2 expression was predominantly observed in the non-synaptic fraction of purified neurons. These studies highlight a cell-type dependent role of a well-characterized antiviral protein in enhancing neuronal infection.


Subject(s)
Antigens, CD/metabolism , Measles virus/physiology , Membrane Glycoproteins/metabolism , Neurons/virology , Animals , Antigens, CD/genetics , Brain/metabolism , Brain/virology , Gene Expression Regulation , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Neurons/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Synapses
11.
Br J Cancer ; 124(12): 1900-1901, 2021 06.
Article in English | MEDLINE | ID: mdl-33767420

ABSTRACT

Recent advances in our understanding of tumour heterogeneity alongside studies investigating altered metabolism within transformed tissue have identified metabolic pathways critical to cancer cell survival. Leveraging this information presents a promising new avenue for the generation of cancer-specific therapeutics and improved patient outcomes.


Subject(s)
Acetate-CoA Ligase/antagonists & inhibitors , Acetates/metabolism , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/pharmacology , Humans , Metabolic Networks and Pathways/drug effects , Mice , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Neoplasms/metabolism , Neoplasms/mortality , Neoplasms/pathology , Treatment Outcome
12.
Cancer Res ; 81(5): 1252-1264, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33414169

ABSTRACT

Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.


Subject(s)
Acetate-CoA Ligase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Drug Stability , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fatty Acids/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Mice, Inbred Strains , Molecular Docking Simulation , Molecular Targeted Therapy/methods , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
13.
Insectes Soc ; 67(1): 127-138, 2020 Feb.
Article in English | MEDLINE | ID: mdl-33311731

ABSTRACT

Meiotic recombination is an essential component of eukaryotic sexual reproduction but its frequency varies within and between genomes. Although it is well-established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the Western Honey Bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species' near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results because it is unclear how representative these samples are. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculate about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.

14.
Autophagy ; 16(12): 2131-2139, 2020 12.
Article in English | MEDLINE | ID: mdl-32964796

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is the most recent example of an emergent coronavirus that poses a significant threat to human health. Virus-host interactions play a major role in the viral life cycle and disease pathogenesis, and cellular pathways such as macroautophagy/autophagy prove to be either detrimental or beneficial to viral replication and maturation. Here, we describe the literature over the past twenty years describing autophagy-coronavirus interactions. There is evidence that many coronaviruses induce autophagy, although some of these viruses halt the progression of the pathway prior to autophagic degradation. In contrast, other coronaviruses usurp components of the autophagy pathway in a non-canonical fashion. Cataloging these virus-host interactions is crucial for understanding disease pathogenesis, especially with the global challenge of SARS-CoV-2 and COVID-19. With the recognition of autophagy inhibitors, including the controversial drug chloroquine, as possible treatments for COVID-19, understanding how autophagy affects the virus will be critical going forward. Abbreviations: 3-MA: 3-methyladenine (autophagy inhibitor); AKT/protein kinase B: AKT serine/threonine kinase; ATG: autophagy related; ATPase: adenosine triphosphatase; BMM: bone marrow macrophage; CGAS: cyclic GMP-AMP synthase; CHO: Chinese hamster ovary/cell line; CoV: coronaviruses; COVID-19: Coronavirus disease 2019; DMV: double-membrane vesicle; EAV: equine arteritis virus; EDEM1: ER degradation enhancing alpha-mannosidase like protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; GFP: green fluorescent protein; HCoV: human coronavirus; HIV: human immunodeficiency virus; HSV: herpes simplex virus; IBV: infectious bronchitis virus; IFN: interferon; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCoV: mouse coronavirus; MERS-CoV: Middle East respiratory syndrome coronavirus; MHV: mouse hepatitis virus; NBR1: NBR1 autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2 (autophagy receptor that directs cargo to phagophores); nsp: non-structural protein; OS9: OS9 endoplasmic reticulum lectin; PEDV: porcine epidemic diarrhea virus; PtdIns3K: class III phosphatidylinositol 3-kinase; PLP: papain-like protease; pMEF: primary mouse embryonic fibroblasts; SARS-CoV: severe acute respiratory syndrome coronavirus; SKP2: S-phase kinase associated protein 2; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; ULK1: unc-51 like autophagy activating kinase 1; Vps: vacuolar protein sorting.


Subject(s)
Autophagy/physiology , Coronavirus Infections/immunology , Coronavirus/immunology , Animals , Autophagy-Related Protein 5/physiology , CHO Cells , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Coronavirus/pathogenicity , Coronavirus/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cricetinae , Cricetulus , Humans , Mice , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Signal Transduction/physiology
15.
Nature ; 579(7800): 586-591, 2020 03.
Article in English | MEDLINE | ID: mdl-32214246

ABSTRACT

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


Subject(s)
Acetates/metabolism , Dietary Sugars/metabolism , Fructose/metabolism , Gastrointestinal Microbiome/physiology , Lipogenesis , Liver/metabolism , ATP Citrate (pro-S)-Lyase/deficiency , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Acetate-CoA Ligase/deficiency , Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Acetyl Coenzyme A/metabolism , Animals , Citric Acid/metabolism , Dietary Sugars/administration & dosage , Dietary Sugars/pharmacology , Fatty Acids/metabolism , Fructose/administration & dosage , Fructose/pharmacology , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , Isotope Labeling , Lipogenesis/drug effects , Lipogenesis/genetics , Liver/cytology , Liver/drug effects , Liver/enzymology , Male , Mice , Substrate Specificity
16.
Br J Cancer ; 122(6): 868-884, 2020 03.
Article in English | MEDLINE | ID: mdl-31942031

ABSTRACT

BACKGROUND: Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. METHODS: We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. RESULTS: We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. CONCLUSION: We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype.


Subject(s)
Claudins/metabolism , Fatty Acids/metabolism , Metabolomics/methods , Proto-Oncogene Proteins c-myc/genetics , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Humans , Transfection
17.
Neurol Ther ; 8(2): 185-205, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31273563

ABSTRACT

Multiple sclerosis (MS) is a chronic progressive disease and many patients transition from an initial relapsing-remitting course to a secondary progressive pattern. Accurate classification of disease status is critical to ensure that patients are treated appropriately and kept informed of their prognosis. Consensus terms defining the different forms of MS are available but were developed primarily for healthcare professionals (HCPs) and may be of limited value to patients. This article provides direct insights from four patients with MS, at different points in their disease trajectory, regarding their understanding of, and attitudes toward, MS progression. We also examine the utility of the current classification systems from the perspectives of patients and HCPs. Responses collected during in-depth, structured interviews and questionnaires portrayed the difficulties patients face accepting their MS diagnosis and treatment, revealed how understanding of the term "disease progression" varies considerably, and highlighted the challenges surrounding the period of transition to secondary progressive MS (SPMS). The terms describing different MS types were considered confusing and can make patients feel "compartmentalized" or "labeled". Patients also struggled to relate these terms to their reality of living with MS, were reluctant to discuss progression with their HCPs, and feared being diagnosed with SPMS owing to concerns about treatment access. These insights highlight the need to develop patient-friendly language to describe MS progression; it may also be preferable for HCPs to describe MS as a disease spectrum in discussions with their patients. FUNDING: Novartis Pharmaceuticals Corporation. Plain language summary available for this article.

18.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31270232

ABSTRACT

Genomic material from many neurotropic RNA viruses (e.g., measles virus [MV], West Nile virus [WNV], Sindbis virus [SV], rabies virus [RV], and influenza A virus [IAV]) remains detectable in the mouse brain parenchyma long after resolution of the acute infection. The presence of these RNAs in the absence of overt central nervous system (CNS) disease has led to the suggestion that they are viral remnants, with little or no potential to reactivate. Here we show that MV RNA remains detectable in permissive mouse neurons long after challenge with MV and, moreover, that immunosuppression can cause RNA and protein synthesis to rebound, triggering neuropathogenesis months after acute viral control. Robust recrudescence of viral transcription and protein synthesis occurs after experimental depletion of cells of the adaptive immune response and is associated with a loss of T resident memory (Trm) lymphocytes within the brain. The disease associated with loss of immune control is distinct from that seen during the acute infection: immune cell-depleted, long-term-infected mice display severe gait and motor problems, in contrast to the wasting and lethal disease that occur during acute infection of immunodeficient hosts. These results illuminate the potential consequences of noncytolytic, immune-mediated viral control in the CNS and demonstrate that what were once considered "resolved" RNA viral infections may, in fact, induce diseases later in life that are distinct from those caused by acute infection.IMPORTANCE Viral infections of neurons are often not cytopathic; thus, once-infected neurons survive, and viral RNAs can be detected long after apparent viral control. These RNAs are generally considered viral fossils, unlikely to contribute to central nervous system (CNS) disease. Using a mouse model of measles virus (MV) neuronal infection, we show that MV RNA is maintained in the CNS of infected mice long after acute control and in the absence of overt disease. Viral replication is suppressed by the adaptive immune response; when these immune cells are depleted, viral protein synthesis recurs, inducing a CNS disease that is distinct from that observed during acute infection. The studies presented here provide the basis for understanding how persistent RNA infections in the CNS are controlled by the host immune response, as well as the pathogenic consequences of noncytolytic viral control.


Subject(s)
Measles virus/genetics , Neurons/virology , RNA Virus Infections/virology , Animals , Brain/virology , Central Nervous System/virology , Disease Models, Animal , Female , Male , Measles/virology , Measles virus/metabolism , Mice , Mice, Transgenic , Neurons/metabolism , RNA/genetics , RNA/metabolism , RNA Virus Infections/genetics , RNA Virus Infections/metabolism , RNA Viruses/genetics , RNA Viruses/metabolism
19.
J Neuroimmunol ; 308: 25-29, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28187911

ABSTRACT

Central nervous system consequences of viral infections are rare, but when they do occur, they are often serious and clinically challenging to manage. Our awareness of the perils of neuroinvasion by viruses is growing: the recently appreciated impact of Ebola and Zika virus infections on CNS integrity, decreases in vaccination coverage for potentially neurotropic viruses such as measles, and increased neurovirulence of some influenza strains collectively highlight the need for a better understanding of the viral-neural interaction. Defining these interactions and how they result in neuropathogenesis is paramount for the development of better clinical strategies, especially given the limited treatment options that are available due to the unique physiology of the brain that limits migration of blood-borne molecules into the CNS parenchyma. In this perspective, we discuss some unique aspects of neuronal viral infections and immune-mediated control that impact the pathogenic outcomes of these infections. Further, we draw attention to an often overlooked aspect of neuropathogenesis research: that lack of overt disease, which is often equated with survival post-infection, likely only scratches the surface of the myriad ways by which neurotropic infections can impair CNS function.


Subject(s)
Central Nervous System Viral Diseases/mortality , Central Nervous System/pathology , Kaplan-Meier Estimate , Animals , Central Nervous System/virology , Central Nervous System Viral Diseases/genetics , Disease Models, Animal , Humans , Interferon-gamma/deficiency , Interferon-gamma/genetics , Membrane Cofactor Protein/deficiency , Membrane Cofactor Protein/genetics , Mice , Mice, Transgenic , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics
20.
Nat Rev Neurosci ; 17(12): 766-776, 2016 12.
Article in English | MEDLINE | ID: mdl-27811921

ABSTRACT

It is becoming clear that the manner by which the immune response resolves or contains infection by a pathogen varies according to the tissue that is affected. Unlike many peripheral cell types, CNS neurons are generally non-renewable. Thus, the cytolytic and inflammatory strategies that are effective in controlling infections in the periphery could be damaging if deployed in the CNS. Perhaps for this reason, the immune response to some CNS viral infections favours maintenance of neuronal integrity and non-neurolytic viral control. This modified immune response - when combined with the unique anatomy and physiology of the CNS - provides an ideal environment for the maintenance of viral genomes, including those of RNA viruses. Therefore, it is possible that such viruses can reactivate long after initial viral exposure, contributing to CNS disease.


Subject(s)
Brain/immunology , Immunity, Innate/physiology , Neurons/immunology , RNA Virus Infections/immunology , RNA Viruses/immunology , Animals , Brain/metabolism , Brain/pathology , Central Nervous System Diseases/immunology , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology , Humans , Neurons/metabolism , Neurons/pathology , RNA Virus Infections/metabolism , RNA Virus Infections/pathology , RNA Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...