Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
One Health Outlook ; 6(1): 3, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504381

ABSTRACT

BACKGROUND: The dynamic nature of zoonotic emergence, spillover and spread necessitates multisectoral coordination beyond national borders to encompass cross-boundary and regional cooperation. Designated points of entry (POEs), specifically ground crossings, serve as critical locales for establishing and maintaining robust prevention, detection, notification, coordination, and response mechanisms to transboundary emerging and re-emerging disease threats. In order to better assess One Health capacities for transboundary zoonotic diseases (TZD) prevention, detection and response we adapted an existing tool, One Health Systems Assessment for Priority Zoonoses (OHSAPZ), for a cross-border, POE setting in North Africa. METHODS: The One Health Transboundary Assessment for Priority Zoonoses (OHTAPZ) tool was used to support prioritization of transboundary zoonoses and analyze operational capacities between national and subnational-level human and animal health stakeholders from Libya and Tunisia. Country partners jointly identified and prioritized five TZDs of concern. Case study scenarios for each priority pathogen were used to elicit current disease operations, as well as multisectoral and bilateral engagement networks. Finally, a gap analysis was performed to determine bilateral strengths and weaknesses to TZDs. RESULTS: The five priority TZDs jointly confirmed to undergo One Health assessment were avian influenza (low and high pathogenic strains); brucellosis; Rift Valley fever; Crimean-Congo hemorrhagic fever; and rabies. Using the qualitative information collected, a transboundary systems map schematic was developed outlining the movement of human patients, animals, diagnostic samples, and routes of communication and coordination both within and between countries for zoonotic diseases. CONCLUSIONS: Analysis of current operations (prevention, detection, surveillance, laboratory capacity, quarantine/isolation, and response) and the resulting transboundary systems map schematic helped identify existing capacity strengths for certain priority pathogens, as well as challenges to timely information-sharing and coordination. We developed targeted recommendations to address these limitations for joint action planning between Libya and Tunisia.

2.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38423763

ABSTRACT

Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.


Subject(s)
Sensory Receptor Cells , Zebrafish , Animals , Zebrafish/metabolism , Animals, Genetically Modified , Cell Survival , Sensory Receptor Cells/physiology , Axons/physiology , Single-Cell Analysis , Mammals
4.
Risk Manag Healthc Policy ; 16: 2497-2504, 2023.
Article in English | MEDLINE | ID: mdl-38024504

ABSTRACT

One Health is increasingly recognized as an important approach for health systems, particularly with respect to strengthening prevention, detection and response to zoonotic and other emerging disease threats. While many global health security frameworks reference the importance of One Health, there are fewer existing methodologies, tools, and resources for supporting countries and other regional or sub-national authorities in systematically assessing their One Health capabilities. We describe here two methodologies, One Health Systems Assessment for Priority Zoonoses (OHSAPZ) and One Health Transboundary Assessment for Priority Zoonoses (OHTAPZ), which have been developed to assist with creating consensus lists of priority zoonotic diseases for cross-sectoral consideration; identification of current strengths and gaps in One Health communication and coordination between sectors (and, in the case of OHTAPZ, between countries); and the development and dissemination of prioritized recommendations for future capacity strengthening. Implemented to date in seven diverse countries in Africa and the Eastern Mediterranean regions, these tools provide a modular, flexible and easily adaptable approach to One Health systems assessment that can support national capacity strengthening, regional epidemic preparedness, and compliance with international frameworks.

5.
bioRxiv ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37693470

ABSTRACT

Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.

6.
PLOS Glob Public Health ; 3(7): e0002005, 2023.
Article in English | MEDLINE | ID: mdl-37494334

ABSTRACT

Continued emergence, re-emergence and spread of zoonotic diseases demonstrates the imperative need for multisectoral communication and joint coordination of disease detection and response. While there are existing international frameworks underpinning One Health capacity building for pandemic prevention and response, often guidance does not account for challenges faced by countries undergoing long-term conflict and sociopolitical instability. The purpose of this research was to identify Libya's laboratory and surveillance networks and routes of inter- and multisectoral communication and coordination for priority zoonotic diseases. The One Health Systems Assessment for Priority Zoonoses (OH-SAPZ) tool is an established methodology that was adapted and applied to the Libyan context to support prioritization of zoonotic diseases, development of systems map schematics outlining networks of communication and coordination, and analysis of operations for targeted capacity building efforts. Five zoonotic diseases were selected to undergo assessment: highly pathogenic avian influenza, brucellosis, Rift Valley fever, leishmaniasis and rabies. Through decisive acknowledgement of Libya's unique health setting, we mapped how patient and sample information is both communicated within and between the human, animal and environmental health sectors, spanning from local index case identification to international notification. Through our assessment we found strong communication within the public and animal health sectors, as well as existing multisectoral coordination on zoonotic disease response. However, local-level communication between the sectors is currently lacking. Due to the ongoing conflict, resources (financial and human) and access have been severely impacted, resulting in limited laboratory diagnostic capacity and discontinued disease prevention and control measures. We sought to identify opportunities to leverage existing operations for endemic diseases like brucellosis for emerging zoonotic threats, such as Rift Valley fever. Analysis of these operations and capabilities supports the development of targeted recommendations that address gaps and may be used as an implementation guide for future One Health capacity building efforts.

7.
J Am Soc Nephrol ; 33(3): 584-600, 2022 03.
Article in English | MEDLINE | ID: mdl-35064051

ABSTRACT

BACKGROUND: Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS: We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS: Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS: Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.


Subject(s)
Cullin Proteins , Hypertension , Pseudohypoaldosteronism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cullin Proteins/genetics , Cullin Proteins/metabolism , Female , Humans , Hypertension/genetics , Male , Mice , Microfilament Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism , Solute Carrier Family 12, Member 3/metabolism
8.
EMBO J ; 39(15): e105127, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32567101

ABSTRACT

Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co-opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin-bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross-kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.


Subject(s)
Bacterial Proteins , Deubiquitinating Enzymes , Legionella/enzymology , Protein Folding , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Legionella/genetics , Polyubiquitin/chemistry , Polyubiquitin/genetics , Polyubiquitin/metabolism , Substrate Specificity
9.
Am J Physiol Renal Physiol ; 318(1): F216-F228, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31736353

ABSTRACT

K+ deficiency stimulates renal salt reuptake via the Na+-Cl- cotransporter (NCC) of the distal convoluted tubule (DCT), thereby reducing K+ losses in downstream nephron segments while increasing NaCl retention and blood pressure. NCC activation is mediated by a kinase cascade involving with no lysine (WNK) kinases upstream of Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress-responsive kinase-1 (OSR1). In K+ deficiency, WNKs and SPAK/OSR1 concentrate in spherical cytoplasmic domains in the DCT termed "WNK bodies," the significance of which is undetermined. By feeding diets of varying salt and K+ content to mice and using genetically engineered mouse lines, we aimed to clarify whether WNK bodies contribute to WNK-SPAK/OSR1-NCC signaling. Phosphorylated SPAK/OSR1 was present both at the apical membrane and in WNK bodies within 12 h of dietary K+ deprivation, and it was promptly suppressed by K+ loading. In WNK4-deficient mice, however, larger WNK bodies formed, containing unphosphorylated WNK1, SPAK, and OSR1. This suggests that WNK4 is the primary active WNK isoform in WNK bodies and catalyzes SPAK/OSR1 phosphorylation therein. We further examined mice carrying a kidney-specific deletion of the basolateral K+ channel-forming protein Kir4.1, which is required for the DCT to sense plasma K+ concentration. These mice displayed remnant mosaic expression of Kir4.1 in the DCT, and upon K+ deprivation, WNK bodies developed only in Kir4.1-expressing cells. We postulate a model of DCT function in which NCC activity is modulated by plasma K+ concentration via WNK4-SPAK/OSR1 interactions within WNK bodies.


Subject(s)
Hypokalemia/metabolism , Kidney/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Female , Hypokalemia/blood , Kidney Tubules, Distal/metabolism , Male , Mice , Mice, Knockout , Phosphorylation , Potassium/blood , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/physiology , Solute Carrier Family 12, Member 3/metabolism
10.
Am J Physiol Renal Physiol ; 317(4): F825-F838, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31364380

ABSTRACT

Hypomagnesemia is associated with reduced kidney function and life-threatening complications and sustains hypokalemia. The distal convoluted tubule (DCT) determines final urinary Mg2+ excretion and, via activity of the Na+-Cl- cotransporter (NCC), also plays a key role in K+ homeostasis by metering Na+ delivery to distal segments. Little is known about the mechanisms by which plasma Mg2+ concentration regulates NCC activity and how low-plasma Mg2+ concentration and K+ concentration interact to modulate NCC activity. To address this, we performed dietary manipulation studies in mice. Compared with normal diet, abundances of total NCC and phosphorylated NCC (pNCC) were lower after short-term (3 days) or long-term (14 days) dietary Mg2+ restriction. Altered NCC activation is unlikely to play a role, since we also observed lower total NCC abundance in mice lacking the two NCC-activating kinases, STE20/SPS-1-related proline/alanine-rich kinase and oxidative stress response kinase-1, after Mg2+ restriction. The E3 ubiquitin-protein ligase NEDD4-2 regulates NCC abundance during dietary NaCl loading or K+ restriction. Mg2+ restriction did not lower total NCC abundance in inducible nephron-specific neuronal precursor cell developmentally downregulated 4-2 (NEDD4-2) knockout mice. Total NCC and pNCC abundances were similar after short-term Mg2+ or combined Mg2+-K+ restriction but were dramatically lower compared with a low-K+ diet. Therefore, sustained NCC downregulation may serve a mechanism that enhances distal Na+ delivery during states of hypomagnesemia, maintaining hypokalemia. Similar results were obtained with long-term Mg2+-K+ restriction, but, surprisingly, NCC was not activated after long-term K+ restriction despite lower plasma K+ concentration, suggesting significant differences in distal tubule adaptation to acute or chronic K+ restriction.


Subject(s)
Hypokalemia/metabolism , Magnesium Deficiency/metabolism , Nedd4 Ubiquitin Protein Ligases/biosynthesis , Animals , Diet , Down-Regulation , Kidney Tubules, Distal/metabolism , Magnesium/blood , Magnesium Deficiency/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases/genetics , Phosphorylation , Potassium/blood , Potassium Deficiency/metabolism , Solute Carrier Family 12, Member 3/biosynthesis , Solute Carrier Family 12, Member 3/genetics
11.
Am J Physiol Renal Physiol ; 315(4): F781-F790, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29412704

ABSTRACT

With no lysine kinase 4 (WNK4) is essential to activate the thiazide-sensitive NaCl cotransporter (NCC) along the distal convoluted tubule, an effect central to the phenotype of familial hyperkalemic hypertension. Although effects on potassium and sodium channels along the connecting and collecting tubules have also been documented, WNK4 is typically believed to have little role in modulating sodium chloride reabsorption along the thick ascending limb of the loop of Henle. Yet wnk4-/- mice (knockout mice lacking WNK4) do not demonstrate the hypocalciuria typical of pure distal convoluted tubule dysfunction. Here, we tested the hypothesis that WNK4 also modulates bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) function along the thick ascending limb. We confirmed that w nk4-/- mice are hypokalemic and waste sodium chloride, but are also normocalciuric. Results from Western blots suggested that the phosphorylated forms of both NCC and NKCC2 were in lower abundance in wnk4-/- mice than in controls. This finding was confirmed by immunofluorescence microscopy. Although the initial response to furosemide was similar in wnk4-/- mice and controls, the response was lower in the knockout mice when reabsorption along the distal convoluted tubule was inhibited. Using HEK293 cells, we showed that WNK4 increases the abundance of phosphorylated NKCC2. More supporting evidence that WNK4 may modulate NKCC2 emerges from a mouse model of WNK4-mediated familial hyperkalemic hypertension in which more phosphorylated NKCC2 is present than in controls. These data indicate that WNK4, in addition to modulating NCC, also modulates NKCC2, contributing to its physiological function in vivo.


Subject(s)
Chlorides/metabolism , Kidney Tubules, Distal/metabolism , Protein Serine-Threonine Kinases/metabolism , Solute Carrier Family 12, Member 1/metabolism , Animals , Hypertension/metabolism , Kidney Tubules, Collecting/metabolism , Lysine/metabolism , Mice, Knockout , Potassium/metabolism , Protein Serine-Threonine Kinases/genetics , Sodium-Potassium-Chloride Symporters/metabolism
12.
JCI Insight ; 2(24)2017 12 21.
Article in English | MEDLINE | ID: mdl-29263298

ABSTRACT

Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine [K] Kinase 4 (WNK4), with excessive activation of the downstream Sterile 20 (STE20)/SPS-1-related proline/alanine-rich kinase (SPAK) increasing phosphorylation of the Na+-Cl- cotransporter (NCC). CUL3-Δ9 promotes its own degradation via autoubiquitination, leading to the hypothesis that Cul3 haploinsufficiency causes FHHt. To directly test this, we generated Cul3 heterozygous mice (CUL3-Het), and Cul3 heterozygotes also expressing CUL3-Δ9 (CUL3-Het/Δ9), using an inducible renal epithelial-specific system. Endogenous CUL3 was reduced to 50% in both models, and consistent with autoubiquitination, CUL3-Δ9 protein was undetectable in CUL3-Het/Δ9 kidneys unless primary renal epithelia cells were cultured. Abundances of WNK4 and phosphorylated NCC did not differ between control and CUL3-Het mice, but they were elevated in CUL3-Het/Δ9 mice, which also displayed higher plasma [K+] and blood pressure. Abundance of phosphorylated Na+-K+-2Cl- cotransporter (NKCC2) was also increased, which may contribute to the severity of CUL3-Δ9-mediated FHHt. WNK4 and SPAK localized to puncta in NCC-positive segments but not in NKCC2-positive segments, suggesting differential effects of CUL3-Δ9. These results indicate that Cul3 haploinsufficiency does not cause FHHt, but dominant effects of CUL3-Δ9 are required.


Subject(s)
Cullin Proteins/genetics , Cullin Proteins/metabolism , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism , Animals , Blood Pressure/genetics , Cells, Cultured , Epithelial Cells , Female , Haploinsufficiency , Heterozygote , Kidney/metabolism , Male , Mice , Mutation , Phosphorylation , Potassium/blood , Protein Serine-Threonine Kinases/metabolism , Pseudohypoaldosteronism/physiopathology , Solute Carrier Family 12, Member 1/metabolism , Solute Carrier Family 12, Member 3/metabolism , Ubiquitination , Wnt4 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...