Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Genomics ; 17: 147, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26920945

ABSTRACT

BACKGROUND: Diet and particularly dietary fibres have an impact on the gut microbiome and play an important role in human health and disease. Pectin is a highly consumed dietary fibre found in fruits and vegetables and is also a widely used additive in the food industry. Yet there is no information on the effect of pectin on the human gut microbiome. Likewise, little is known on gut pectinolytic bacteria and their enzyme systems. This study was undertaken to investigate the mechanisms of pectin degradation by the prominent human gut symbiont Bacteroides xylanisolvens. RESULTS: Transcriptomic analyses of B. xylanisolvens XB1A grown on citrus and apple pectins at mid- and late-log phases highlighted six polysaccharide utilization loci (PUL) that were overexpressed on pectin relative to glucose. The PUL numbers used in this report are those given by Terrapon et al. (Bioinformatics 31(5):647-55, 2015) and found in the PUL database: http://www.cazy.org/PULDB/. Based on their CAZyme composition, we propose that PUL 49 and 50, the most overexpressed PULs on both pectins and at both growth phases, are involved in homogalacturonan (HG) and type I rhamnogalacturonan (RGI) degradation, respectively. PUL 13 and PUL 2 could be involved in the degradation of arabinose-containing side chains and of type II rhamnogalacturonan (RGII), respectively. Considering that HG is the most abundant moiety (>70%) within pectin, the importance of PUL 49 was further investigated by insertion mutagenesis into the susC-like gene. The insertion blocked transcription of the susC-like and the two downstream genes (susD-like/FnIII). The mutant showed strong growth reduction, thus confirming that PUL 49 plays a major role in pectin degradation. CONCLUSION: This study shows the existence of six PULs devoted to pectin degradation by B. xylanisolvens, one of them being particularly important in this function. Hence, this species deploys a very complex enzymatic machinery that probably reflects the structural complexity of pectin. Our findings also highlight the metabolic plasticity of B. xylanisolvens towards dietary fibres that contributes to its competitive fitness within the human gut ecosystem. Wider functional and ecological studies are needed to understand how dietary fibers and especially plant cell wall polysaccharides drive the composition and metabolism of the fibrolytic and non-fibrolytic community within the gut microbial ecosystem.


Subject(s)
Bacteroides/metabolism , Dietary Fiber/metabolism , Pectins/metabolism , Sequence Analysis, RNA/methods , Bacteroides/genetics , Citrus/chemistry , Genetic Loci , Malus/chemistry , Mutagenesis , RNA, Bacterial/genetics , Transcriptome
3.
Microbiome ; 3: 53, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26568112

ABSTRACT

BACKGROUND: The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. RESULTS: Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. CONCLUSIONS: These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.


Subject(s)
Diet, High-Fat , Diet, Western , Dietary Proteins/administration & dosage , Firmicutes/isolation & purification , Gastrointestinal Microbiome , Microbiota , Prevotella/isolation & purification , Animals , Biological Evolution , Carbohydrate Metabolism , Chlorocebus aethiops , Firmicutes/genetics , Humans , Metagenomics/statistics & numerical data , Models, Animal , Prevotella/genetics
4.
Mol Neurodegener ; 9: 36, 2014 Sep 13.
Article in English | MEDLINE | ID: mdl-25217888

ABSTRACT

BACKGROUND: The ingestion of a high-fat diet (HFD) and the resulting obese state can exert a multitude of stressors on the individual including anxiety and cognitive dysfunction. Though many studies have shown that exercise can alleviate the negative consequences of a HFD using metabolic readouts such as insulin and glucose, a paucity of well-controlled rodent studies have been published on HFD and exercise interactions with regard to behavioral outcomes. This is a critical issue since some individuals assume that HFD-induced behavioral problems such as anxiety and cognitive dysfunction can simply be exercised away. To investigate this, we analyzed mice fed a normal diet (ND), ND with exercise, HFD diet, or HFD with exercise. RESULTS: We found that mice on a HFD had robust anxiety phenotypes but this was not rescued by exercise. Conversely, exercise increased cognitive abilities but this was not impacted by the HFD. Given the importance of the gut microbiome in shaping the host state, we used 16S rRNA hypervariable tag sequencing to profile our cohorts and found that HFD massively reshaped the gut microbial community in agreement with numerous published studies. However, exercise alone also caused massive shifts in the gut microbiome at nearly the same magnitude as diet but these changes were surprisingly orthogonal. Additionally, specific bacterial abundances were directly proportional to measures of anxiety or cognition. CONCLUSIONS: Thus, behavioral domains and the gut microbiome are both impacted by diet and exercise but in unrelated ways. These data have important implications for obesity research aimed at modifications of the gut microbiome and suggest that specific gut microbes could be used as a biomarker for anxiety or cognition or perhaps even targeted for therapy.


Subject(s)
Anxiety/etiology , Cognition/physiology , Intestines/microbiology , Obesity/complications , Physical Conditioning, Animal/physiology , Animals , Diet , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Microbiota , Obesity/microbiology , Obesity/psychology , Physical Conditioning, Animal/psychology
5.
PLoS One ; 8(6): e65333, 2013.
Article in English | MEDLINE | ID: mdl-23750253

ABSTRACT

BACKGROUND: Ruminococcus flavefaciens is an important fibre-degrading bacterium found in the mammalian gut. Cellulolytic strains from the bovine rumen have been shown to produce complex cellulosome structures that are associated with the cell surface. R. flavefaciens 007 is a highly cellulolytic strain whose ability to degrade dewaxed cotton, but not Avicel cellulose, was lost following initial isolation in the variant 007S. The ability was recovered after serial subculture to give the cotton-degrading strain 007C. This has allowed us to investigate the factors required for degradation of this particularly recalcitrant form of cellulose. METHODOLOGY/PRINCIPAL FINDINGS: The major proteins associated with the bacterial cell surface and with the culture supernatant were analyzed for R. flavefaciens 007S and 007C grown with cellobiose, xylan or Avicel cellulose as energy sources. Identification of the proteins was enabled by a draft genome sequence obtained for 007C. Among supernatant proteins a cellulosomal GH48 hydrolase, a rubrerthyrin-like protein and a protein with type IV pili N-terminal domain were the most strongly up-regulated in 007C cultures grown on Avicel compared with cellobiose. Strain 007S also showed substrate-related changes, but supernatant expression of the Pil protein and rubrerythrin in particular were markedly lower in 007S than in 007C during growth on Avicel. CONCLUSIONS/SIGNIFICANCE: This study provides new information on the extracellular proteome of R. flavefaciens and its regulation in response to different growth substrates. Furthermore it suggests that the cotton cellulose non-degrading strain (007S) has altered regulation of multiple proteins that may be required for breakdown of cotton cellulose. One of these, the type IV pilus was previously shown to play a role in adhesion to cellulose in R. albus, and a related pilin protein was identified here for the first time as a major extracellular protein in R. flavefaciens.


Subject(s)
Bacterial Proteins/metabolism , Cellulosomes/metabolism , Extracellular Space/metabolism , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Proteome/metabolism , Ruminococcus/cytology , Ruminococcus/metabolism , Bacterial Proteins/genetics , Cellulose/metabolism , Fimbriae, Bacterial/genetics , Hemerythrin/metabolism , Multigene Family , Proteome/genetics , Rubredoxins/metabolism , Ruminococcus/genetics , Ruminococcus/growth & development
6.
PLoS One ; 8(2): e56111, 2013.
Article in English | MEDLINE | ID: mdl-23405259

ABSTRACT

BACKGROUND: Bacterial vaginosis (BV) is the most common vaginal disorder of reproductive-age women. Yet the cause of BV has not been established. To uncover key determinants of BV, we employed a multi-omic, systems-biology approach, including both deep 16S rRNA gene-based sequencing and metabolomics of lavage samples from 36 women. These women varied demographically, behaviorally, and in terms of health status and symptoms. PRINCIPAL FINDINGS: 16S rRNA gene-based community composition profiles reflected Nugent scores, but not Amsel criteria. In contrast, metabolomic profiles were markedly more concordant with Amsel criteria. Metabolomic profiles revealed two distinct symptomatic BV types (SBVI and SBVII) with similar characteristics that indicated disruption of epithelial integrity, but each type was correlated to the presence of different microbial taxa and metabolites, as well as to different host behaviors. The characteristic odor associated with BV was linked to increases in putrescine and cadaverine, which were both linked to Dialister spp. Additional correlations were seen with the presence of discharge, 2-methyl-2-hydroxybutanoic acid, and Mobiluncus spp., and with pain, diethylene glycol and Gardnerella spp. CONCLUSIONS: The results not only provide useful diagnostic biomarkers, but also may ultimately provide much needed insight into the determinants of BV.


Subject(s)
Actinomycetales Infections/diagnosis , Gram-Positive Bacterial Infections/diagnosis , Metabolomics , RNA, Ribosomal, 16S/genetics , Vagina/microbiology , Vaginal Diseases/diagnosis , Vaginosis, Bacterial/diagnosis , Actinomycetales Infections/genetics , Actinomycetales Infections/microbiology , Adult , DNA, Bacterial/genetics , Female , Gene Regulatory Networks , Gram-Positive Bacterial Infections/genetics , Gram-Positive Bacterial Infections/microbiology , Humans , Hydroxybutyrates/metabolism , Lactobacillus/classification , Lactobacillus/genetics , Lactobacillus/isolation & purification , Middle Aged , Mobiluncus/genetics , Mobiluncus/isolation & purification , Polymerase Chain Reaction , Vaginal Diseases/etiology , Vaginal Diseases/metabolism , Vaginosis, Bacterial/complications , Vaginosis, Bacterial/microbiology , Young Adult
7.
Proc Natl Acad Sci U S A ; 106(6): 1948-53, 2009 Feb 10.
Article in English | MEDLINE | ID: mdl-19181843

ABSTRACT

The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).


Subject(s)
Genomics/methods , Glycoside Hydrolases/genetics , Metabolomics/methods , Metagenome , Animals , Base Sequence , Cattle , Cellulosomes/genetics , Diet , Food , Glycoside Hydrolases/analysis , Isoptera , Metabolism , Molecular Sequence Data , Rumen
SELECTION OF CITATIONS
SEARCH DETAIL
...