Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 16(6): 1695-708, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24238218

ABSTRACT

A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.


Subject(s)
Halomonas/genetics , Water Microbiology , Genes, Bacterial , Illinois , Metabolic Networks and Pathways/genetics , Metagenome , Microbiota/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Quartz , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Parasitol Res ; 104(2): 419-24, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18850113

ABSTRACT

Encephalitozoon spp. are the primary microsporidial pathogens of humans and domesticated animals. In this experiment, we test the efficacy of four commercial antimicrobials against an Encephalitozoon sp. in an insect host by intra-hemocelic injection. All four antimicrobials, viz., thiabendazole, quinine, albendazole, and fumagillin, significantly reduced but did not eliminate microsporidia spore counts in the grasshopper host. Among these four drugs, thiabendazole was most effective in reducing the microsporidia spore level up to 90%, followed by quinine (70%), albendazole (62%), and fumagillin (59%). No control or quinine-treated animals died, whereas 45% of albendazole animals died. Despite the high mortality induced by albendazole, this drug significantly reduced spore counts, a result not seen in previous per os trials. Among the treatment groups, grasshoppers injected with thiabendazole lost a significant mass. Our study suggests that quinine and related alkaloids should be further examined for antimicrosporidial activity.


Subject(s)
Anti-Infective Agents/administration & dosage , Encephalitozoon/drug effects , Grasshoppers/microbiology , Mycoses/drug therapy , Thiabendazole/administration & dosage , Thiabendazole/therapeutic use , Albendazole/administration & dosage , Albendazole/therapeutic use , Animals , Colony Count, Microbial , Cyclohexanes/administration & dosage , Cyclohexanes/therapeutic use , Fatty Acids, Unsaturated/administration & dosage , Fatty Acids, Unsaturated/therapeutic use , Female , Humans , Male , Quinine/administration & dosage , Quinine/therapeutic use , Sesquiterpenes/administration & dosage , Sesquiterpenes/therapeutic use , Spores, Fungal/drug effects , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...