Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36297918

ABSTRACT

Application of three-dimensional (3D) woven composites is growing as an alternative to the use of ply-based composite materials. However, the design, analysis, modeling, and optimization of these materials is more challenging due to their complex and inherently multiscale geometries. Herein, a multiscale modeling procedure, based on efficient, semi-analytical micromechanical theories rather than the traditional finite element approach, is presented and applied to a 3D woven carbon-epoxy composite. A crack-band progressive damage model was employed for the matrix constituent to capture the globally observed nonlinear response. Realistic microstructural dimensions and tow-fiber volume fractions were determined from detailed X-ray computed tomography (CT) and scanning electron microscopy data. Pre-existing binder-tow disbonds and weft-tow waviness, observed in X-ray CT scans of the composite, were also included in the model. The results were compared with experimental data for the in-plane tensile and shear behavior of the composite. The tensile predictions exhibited good correlations with the test data. While the model was able to capture the less brittle nature of the in-plane shear response, quantitative measures were underpredicted to some degree.

2.
ACS Appl Mater Interfaces ; 8(14): 9327-34, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27044063

ABSTRACT

Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

3.
ACS Appl Mater Interfaces ; 6(9): 6120-6, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24720450

ABSTRACT

The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of sheets and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT sheets and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and electron-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT sheets upon functionalization compared with unfunctionalized sheets, while an additional 48% increase in tensile strength was observed when functionalized sheets were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn.

SELECTION OF CITATIONS
SEARCH DETAIL
...