Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomaterials ; 134: 1-12, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28453953

ABSTRACT

Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/KD) to apatite surfaces compared to VTK, phosphorylated VTK (VTKphos), DPI-VTKphos, RGD-VTK, and peptide-free apatite surfaces (p < 0.01), while significantly increasing hBMSC adhesion strength (τ50, p < 0.01). MSCs demonstrated significantly greater adhesion strength to DPI-VTK compared to other cell types, while attachment of MC3T3 pre-osteoblasts and murine fibroblasts was limited (p < 0.01). MSCs on DPI-VTK coated surfaces also demonstrated increased spreading compared to pre-osteoblasts and fibroblasts. MSCs cultured on DPI-VTK coated apatite films exhibited significantly greater proliferation compared to controls (p < 0.001). Moreover, early and late stage osteogenic differentiation markers were elevated on DPI-VTK coated apatite films compared to controls. Taken together, phage display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface.


Subject(s)
Biocompatible Materials/chemistry , Mesenchymal Stem Cells/cytology , Peptides/pharmacology , Animals , Biomimetic Materials/chemistry , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/physiology , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/physiology , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/physiology , Peptides/chemistry
2.
Connect Tissue Res ; 55 Suppl 1: 160-3, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25158203

ABSTRACT

Cell instructive mineralized biomaterials are a promising alternative to conventional auto-, allo-, and xenograft therapies for the reconstruction of critical sized defects. Extracellular matrix proteins, peptide domains, and functional motifs demonstrating cell and mineral binding activity have been used to improve cell attachment. However, these strategies vary in their tissue regeneration outcomes due to lack of specificity to both regenerative cell populations and the material substrates. In order to mediate cell-specific interactions on apatite surfaces, we identified peptide sequences with high affinity towards apatite (VTKHLNQISQSY, VTK) and clonally derived human bone marrow stromal cells (DPIYALSWSGMA, DPI) using phage display. The primary aims of this study were to measure apatite binding affinity, human bone marrow stromal cell (hBMSC) adhesion strength, and peptide specificity to hBMSCs when the apatite and cell-specific peptides are combined into a dual-functioning peptide. To assess binding affinity to hydroxyapatite (HA), binding isotherms were constructed and peptide binding affinity (K1) determined. HBMSC, MC3T3 and mouse dermal fibroblast (MDF) adhesion strength on biomimetic apatite functionalized with single- and dual-functioning peptide sequences were evaluated using a centrifugation assay. DPI-VTK had the highest binding strength towards hBMSCs (p < 0.01). DPI-VTK, while promoting strong initial attachment to hBMSCs, did not encourage strong adhesions to MC3T3s or fibroblasts (p < 0.01). Taken together, phage display is a promising strategy to identify preferential cell and material binding peptide sequences that can tether specific cell populations onto specific biomaterial chemistries.


Subject(s)
Apatites/metabolism , Biocompatible Materials/metabolism , Bone Marrow Cells/cytology , Calcification, Physiologic/physiology , Minerals/metabolism , Animals , Durapatite/metabolism , Humans , Mice
3.
Gut ; 62(3): 395-403, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22427239

ABSTRACT

OBJECTIVE: To demonstrate a near-infrared (NIR) peptide that is highly specific for colonic adenomas on fluorescence endoscopy in vivo. DESIGN: A 3 mm diameter endoscope was adapted to deliver 671 nm illumination and collect NIR fluorescence (696-736 nm). Target (QPIHPNNM) and control (YTTNKH) peptides were labelled with Cy5.5, a NIR dye, and characterised by mass spectra. The peptides were topically administered separately (100 µM) through the endoscope's instrument channel into the distal colon of CPC;Apc mice, genetically engineered to spontaneously develop adenomas. After 5 min for incubation, the unbound peptides were rinsed off, and images were collected at a rate of 10 frames/s. Regions of interest were identified around the adenoma and adjacent normal-appearing mucosa on white light. Intensity measurements were made from these same regions on fluorescence, and the target-to-background ratio (TBR) was calculated. RESULTS: An image resolution of 9.8 µm and field of view of 3.6 mm was achieved at a distance of 2.5 mm between the distal end of the instrument and the tissue surface. On mass spectra, the experimental mass-to-charge ratio for the Cy5.5-labelled target and control peptides agreed with expected values. The NIR fluorescence images of adenomas revealed individual dysplastic crypts with distorted morphology. By comparison, only amorphous surface features could be visualised from reflected NIR light. The average TBR for adenomas was found to be 3.42 ± 1.30 and 1.88 ± 0.38 for the target and control peptides, respectively, p=0.007. CONCLUSION: A NIR peptide was shown to be highly specific for colonic adenomas on fluorescence endoscopy in vivo and to achieve sub-cellular resolution images.


Subject(s)
Adenoma/diagnosis , Colonic Neoplasms/diagnosis , Endoscopy/methods , Oligopeptides , Animals , Biopsy , Carbocyanines , Diagnostic Imaging/methods , Fluorescence , Humans , Infrared Rays , Mice , Sensitivity and Specificity , Staining and Labeling
5.
Transl Oncol ; 5(5): 313-20, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23066439

ABSTRACT

We demonstrate that rapamycin can induce regression of adenomatous polyposis coli (Apc) mutation-dependent colonic adenomas in genetically engineered mice (CPC;Apc). An endoscope was used to visualize adenomas in CPC;Apc mice weekly for 10 weeks. The lesion surface areas were measured using a distance gauge and digitally generated grid. Coronal scans were performed on magnetic resonance imaging (MRI) to localize adenomas, and tumor volumes were measured from regions of interest drawn on consecutive axial scans. Rapamycin (5 mg/kg) was administered intraperitoneally daily for 5 weeks. Endoscopy and MRI were performed weekly to monitor adenoma regression. Caliper measurements and immunohistochemistry (IHC) were performed on adenomas postmortem. Dimensions from n = 30 adenomas in n = 7 animals were measured. Adenoma surface areas on endoscopy correlated with volumes on MRI and with postmortem caliper measurements, R(2) = 0.84 and R(2) = 0.81, respectively. The mean adenoma doubling times on endoscopy and MRI were 0.95 ± 0.14 and 1.21 ± 0.16 weeks, respectively. The minimum detectable adenoma surface area and volume on endoscopy and MRI was 0.69 mm(2) and 1.76 mm(3), respectively. On histology, the rapamycin-treated adenomas showed limited regions of dysplasia. Rapamycin therapy resulted in much lower mammalian target of rapamycin signaling and cell proliferation. Lower expression of phospho-S6 and reduced numbers of Ki67-positive cells were seen on IHC compared to vehicle-treated lesions. Endoscopy can be validated by MRI as a robust methodology for quantitative monitoring of therapy, representing a promising approach for future preclinical efforts to assess utility of novel colorectal cancer prevention strategies.

6.
J Biomed Opt ; 17(2): 021103, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463021

ABSTRACT

Gastrointestinal cancers are heterogeneous and can overexpress several protein targets that can be imaged simultaneously on endoscopy using multiple molecular probes. We aim to demonstrate a multispectral scanning fiber endoscope for wide-field fluorescence detection of colonic dysplasia. Excitation at 440, 532, and 635 nm is delivered into a single spiral scanning fiber, and fluorescence is collected by a ring of light-collecting optical fibers placed around the instrument periphery. Specific-binding peptides are selected with phage display technology using the CPC;Apc mouse model of spontaneous colonic dysplasia. Validation of peptide specificity is performed on flow cytometry and in vivo endoscopy. The peptides KCCFPAQ, AKPGYLS, and LTTHYKL are selected and labeled with 7-diethylaminocoumarin-3-carboxylic acid (DEAC), 5-carboxytetramethylrhodamine (TAMRA), and CF633, respectively. Separate droplets of KCCFPAQ-DEAC, AKPGYLS-TAMRA, and LTTHYKL-CF633 are distinguished at concentrations of 100 and 1 µM. Separate application of the fluorescent-labeled peptides demonstrate specific binding to colonic adenomas. The average target/background ratios are 1.71 ± 0.19 and 1.67 ± 0.12 for KCCFPAQ-DEAC and AKPGYLS-TAMRA, respectively. Administration of these two peptides together results in distinct binding patterns in the blue and green channels. Specific binding of two or more peptides can be distinguished in vivo using a novel multispectral endoscope to localize colonic dysplasia on real-time wide-field imaging.


Subject(s)
Adenocarcinoma/pathology , Colonic Neoplasms/pathology , Endoscopes, Gastrointestinal , Fiber Optic Technology/instrumentation , Image Enhancement/instrumentation , Microscopy, Fluorescence, Multiphoton/instrumentation , Molecular Imaging/instrumentation , Animals , Cell Line, Tumor , Equipment Design , Equipment Failure Analysis , Mice , Mice, Knockout
7.
Biomed Opt Express ; 2(4): 981-6, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21483619

ABSTRACT

We validate specific binding activity of a fluorescence-labeled peptide to colorectal dysplasia in living mice using a miniature, flexible, fiber microendoscope that passes through the instrument channel of an endoscope. The microendoscope delivers excitation light at 473 nm through a fiber-optic bundle with outer diameter of 680 µm to collect en face images at 10 Hz with 4 µm lateral resolution. We applied the FITC-labeled peptide QPIHPNNM topically to colonic mucosa in genetically engineered mice that spontaneously develop adenomas. More than two-fold greater fluorescence intensity was measured from adenomas compared to adjacent normal-appearing mucosa. Images of adenomas showed irregular morphology characteristic of dysplasia.

8.
PLoS One ; 6(3): e17384, 2011 Mar 08.
Article in English | MEDLINE | ID: mdl-21408169

ABSTRACT

Colorectal cancer (CRC) is a major cause of cancer-related deaths in much of the world. Most CRCs arise from pre-malignant (dysplastic) lesions, such as adenomatous polyps, and current endoscopic screening approaches with white light do not detect all dysplastic lesions. Thus, new strategies to identify such lesions, including non-polypoid lesions, are needed. We aim to identify and validate novel peptides that specifically target dysplastic colonic epithelium in vivo. We used phage display to identify a novel peptide that binds to dysplastic colonic mucosa in vivo in a genetically engineered mouse model of colo-rectal tumorigenesis, based on somatic Apc (adenomatous polyposis coli) gene inactivation. Binding was confirmed using confocal microscopy on biopsied adenomas and excised adenomas incubated with peptide ex vivo. Studies of mice where a mutant Kras allele was somatically activated in the colon to generate hyperplastic epithelium were also performed for comparison. Several rounds of in vivo T7 library biopanning isolated a peptide, QPIHPNNM. The fluorescent-labeled peptide bound to dysplastic lesions on endoscopic analysis. Quantitative assessment revealed the fluorescent-labeled peptide (target/background: 2.17±0.61) binds ∼2-fold greater to the colonic adenomas when compared to the control peptide (target/background: 1.14±0.15), p<0.01. The peptide did not bind to the non-dysplastic (hyperplastic) epithelium of the Kras mice. This work is first to image fluorescence-labeled peptide binding in vivo that is specific towards colonic dysplasia on wide-area surveillance. This finding highlights an innovative strategy for targeted detection to localize pre-malignant lesions that can be generalized to the epithelium of hollow organs.


Subject(s)
Colon/pathology , Endoscopy , Molecular Probes , Peptides , Adenoma/metabolism , Adsorption , Amino Acid Sequence , Animals , Colon/metabolism , Fluorescence , Fluorescent Dyes/metabolism , Hyperplasia , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Microscopy, Confocal , Molecular Sequence Data , Peptide Library , Peptides/chemistry , Protein Binding , Reproducibility of Results , Titrimetry
9.
Biomaterials ; 31(36): 9422-30, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20943264

ABSTRACT

Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues increases peptide specificity for bone-like mineral, whose adsorption is determined primarily by sequence composition and net charge as opposed to sequence order. However, sequence order in addition to net charge modulates the mineralization of osteoblast cultures. The ability of such peptides to inhibit mineralization has potential utility in the management of pathologic calcification.


Subject(s)
Minerals/metabolism , Peptides/chemistry , Peptides/metabolism , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Adsorption , Amino Acid Sequence , Animals , Calcification, Physiologic , Cell Differentiation , Cell Line , Cells, Cultured , Fluorescent Dyes/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Osteoblasts/cytology , Osteoblasts/metabolism , Phosphorylation
10.
Biomed Opt Express ; 1(3): 1014-1025, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-21258526

ABSTRACT

Persistent colonic inflammation increases risk for cancer, but mucosal appearance on conventional endoscopy correlates poorly with histology. Here we demonstrate the use of a flexible silver halide fiber to collect mid-infrared absorption spectra and an interval model to distinguish colitis from normal mucosa in dextran sulfate sodium treated mice. The spectral regime between 950 and 1800 cm(-1) was collected from excised colonic specimens and compared with histology. Our model identified 3 sub-ranges that optimize the classification results, and the performance for detecting inflammation resulted in a sensitivity, specificity, accuracy, and positive predictive value of 92%, 88%, 90%, and 88%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...