Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pain Res ; 17: 1815-1827, 2024.
Article in English | MEDLINE | ID: mdl-38799276

ABSTRACT

Background: Pain management physicians are increasingly focused on limiting prescription opioid abuse, yet existing tools for monitoring adherence have limited accuracy. Medication event monitoring system (MEMS) is an emerging technology for tracking medication usage in real-time but has not been tested in chronic pain patients on long-term opioid regimens. Objective: We conducted a pilot clinical trial to investigate the utility of MEMS for monitoring opioid adherence and compared to traditional methods including self-report diaries, urine drug screen (UDS), and physicians' opinions. Methods: Opioid-maintained chronic pain patients were recruited from a pain management clinic. Participants (n=28) were randomly assigned to either receive MEMS bottles containing their opioid medication for a 90-day period or to continue using standard medication bottles. MEMS bottles were configured to record and timestamp all bottle openings and the number of pills that were removed from the bottle (via measurement of weight change). Results: Participants who received MEMS demonstrated highly heterogenous dosing patterns, with a substantial number of patients rapidly removing excessive amounts of medication and/or "stockpiling" medication. By comparison, physicians rated all participants as either "totally compliant" or "mostly compliant". UDS results did not reveal any illicit drug use, but 25% of participants (n=7) tested negative for their prescribed opioid metabolite. MEMS data did not correlate with physician-rated adherence (P=0.24) and UDS results (P=0.77). MEMS data consistently revealed greater non-adherence than self-report data (P<0.001). Conclusion: These results highlight the limits in our understanding of naturalistic patterns of daily opioid use in chronic pain patients as well as support the use of MEMS for detecting potential misuse as compared to routine adherence monitoring methods. Future research directions include the need to determine how MEMS could be used to improve patient outcomes, minimize harm, and aid in clinical decision-making. Trial Registration: This study was preregistered on ClinicalTrials.gov (NCT03752411).

2.
PNAS Nexus ; 3(3): pgae092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476665

ABSTRACT

We present analysis of neuronal activity recordings from a subset of neurons in the medial prefrontal cortex of rats before and after the administration of cocaine. Using an underlying modern Hopfield model as a description for the neuronal network, combined with a machine learning approach, we compute the underlying functional connectivity of the neuronal network. We find that the functional connectivity changes after the administration of cocaine with both functional-excitatory and functional-inhibitory neurons being affected. Using conventional network analysis, we find that the diameter of the graph, or the shortest length between the two most distant nodes, increases with cocaine, suggesting that the neuronal network is less robust. We also find that the betweenness centrality scores for several of the functional-excitatory and functional-inhibitory neurons decrease significantly, while other scores remain essentially unchanged, to also suggest that the neuronal network is less robust. Finally, we study the distribution of neuronal activity and relate it to energy to find that cocaine drives the neuronal network towards destabilization in the energy landscape of neuronal activation. While this destabilization is presumably temporary given one administration of cocaine, perhaps this initial destabilization indicates a transition towards a new stable state with repeated cocaine administration. However, such analyses are useful more generally to understand how neuronal networks respond to perturbations.

3.
Drug Alcohol Depend ; 253: 111012, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37931328

ABSTRACT

BACKGROUND: People with serious mental illness (SMI; bipolar [BD] or schizophrenia spectrum disorders [SSD]) who smoke have 30-60% lower odds of quitting and are more prone to experience neuropsychiatric adverse events (NPSAEs) when quitting than smokers without SMI. We pilot-tested the feasibility of combining two different dosing strategies of varenicline preloading with Acceptance and Commitment Therapy (ACT) in persons with SMI in an attempt to bolster quit rates without increasing NPSAEs. METHODS: Twelve-week, single center, randomized, double-blind, pilot feasibility trial of low (0.5mg twice daily, slower titration) versus standard dose (1.0mg twice daily, standard titration) varenicline in persons with BD or SSD with a 12-week follow-up. All participants received up to 10 sessions of ACT for smoking cessation. Participants were asked to preload with varenicline while still smoking and set a flexible target quit day (TQD) by day 35. RESULTS: Recruitment was hampered by shutdowns related to COVID-19 and the worldwide varenicline recall, respectively. Retention goals were met. Treatment satisfaction was high across both dosing and diagnostic groups. Most participants (92.9%) adhered to preloading instructions and the flexible TQD. Seven-day point prevalence abstinence at week 12 was highest in BD participants (37.5%) but lowest in SSD participants (16.7%) who received the standard dose. Medication was well tolerated. CONCLUSIONS: Although recruitment was hindered by unanticipated world events, feasibility was demonstrated. Participants adhered to and were highly satisfied with the combination of pre-cessation varenicline plus ACT. Findings support testing this combined treatment approach in a fully powered trial of persons with BD who smoke.


Subject(s)
Acceptance and Commitment Therapy , Schizophrenia , Humans , Varenicline/therapeutic use , Feasibility Studies , Schizophrenia/drug therapy , Smoking/therapy
4.
Synth Biol (Oxf) ; 8(1): ysad003, 2023.
Article in English | MEDLINE | ID: mdl-36960426

ABSTRACT

The presence and impact of variability in cells as the source material for genome engineering are important to consider for the design, execution and interpretation of outcomes of a genome-engineering process. Variability may be present at the genotype and phenotype level, yet the impact of these sources of variability on a genome-engineering experiment may not be regularly considered by researchers. In this perspective, we use clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) genome editing of mammalian cells to provide examples of how variation within or across cell samples may mislead a researcher in their expectations about the cells they are engineering. Furthermore, we highlight the need for understanding the baseline cell genotype and phenotype to appropriately understand the starting cell material and interpret and attribute the impact of engineering on cells. We emphasize that heterogeneity within a cell pool and the inherent variability in the cellular materials used for genome engineering are complex, but of high value to characterize and account for where possible, to move toward the potential of generating desired and predictable engineered products. Provided is a framework cause-and-effect diagram for CRISPR/Cas9 genome editing toward identifying and mitigating potential sources of variability. We encourage researchers to consider the variability of source materials and undertake strategies, which may include those described here, for detecting, attributing and minimizing additional sources of variability where possible toward the aim of fostering greater reliability, confidence and reproducibility in genome-engineering studies. Graphical Abstract.

5.
Proteomes ; 10(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35076613

ABSTRACT

Multiplexed proteomics using isobaric tagging allows for simultaneously comparing the proteomes of multiple samples. In this technique, digested peptides from each sample are labeled with a chemical tag prior to pooling sample for LC-MS/MS with nanoflow chromatography (NanoLC). The isobaric nature of the tag prevents deconvolution of samples until fragmentation liberates the isotopically labeled reporter ions. To ensure efficient peptide labeling, large concentrations of labeling reagents are included in the reagent kits to allow scientists to use high ratios of chemical label per peptide. The increasing speed and sensitivity of mass spectrometers has reduced the peptide concentration required for analysis, leading to most of the label or labeled sample to be discarded. In conjunction, improvements in the speed of sample loading, reliable pump pressure, and stable gradient construction of analytical flow HPLCs has continued to improve the sample delivery process to the mass spectrometer. In this study we describe a method for performing multiplexed proteomics without the use of NanoLC by using offline fractionation of labeled peptides followed by rapid "standard flow" HPLC gradient LC-MS/MS. Standard Flow Multiplexed Proteomics (SFloMPro) enables high coverage quantitative proteomics of up to 16 mammalian samples in about 24 h. In this study, we compare NanoLC and SFloMPro analysis of fractionated samples. Our results demonstrate that comparable data is obtained by injecting 20 µg of labeled peptides per fraction with SFloMPro, compared to 1 µg per fraction with NanoLC. We conclude that, for experiments where protein concentration is not strictly limited, SFloMPro is a competitive approach to traditional NanoLC workflows with improved up-time, reliability and at a lower relative cost per sample.

6.
Neuropsychopharmacology ; 47(11): 1875-1882, 2022 10.
Article in English | MEDLINE | ID: mdl-34916591

ABSTRACT

The nucleus accumbens shell (NAcSh) and its afferent and efferent neuronal projections control key aspects of motivation for cocaine. A recently described regulator of γ-aminobutyric acid (GABA) projections from the dorsal raphe nucleus (DRN) to the NAcSh (DRN → NAcSh) is the neuropeptide neuromedin U (NMU). Here, we find that systemic administration of NMU decreases breakpoint for cocaine on a progressive ratio schedule of reinforcement in male rats. Employing a retrograde adeno-associated virus (AAV), we found that RNAi-mediated knockdown of the NMU receptor 2 (NMUR2) in afferent DRN projections to the NAcSh increases the breakpoint for cocaine. Our previous studies demonstrated that NMU regulates GABA release in the NAcSh, and our current investigation found that systemic NMU administration suppresses cocaine-evoked GABA release in the NAcSh and increases phosphorylated c-Fos expression in neurons projecting from the NAcSh to the ventral pallidum (VP). To further probe the impact of NMU/NMUR2 on neuroanatomical pathways regulating motivation for cocaine, we employed multi-viral transsynaptic studies. Using a combination of rabies virus and retrograde AAV helper virus, we mapped the impact of NMU across three distinct brain regions simultaneously and found a direct connection of GABAergic DRN neurons to the NAcSh → VP pathway. Together, these data reveal that NMU/NMUR2 modulates a direct connection within the GABAergic DRN → NAcSh → VP circuit that diminishes breakpoints for cocaine. These findings importantly advance our understanding of the neurochemical underpinnings of pathway-specific regulation of neurocircuitry that may regulate cocaine self-administration, providing a unique therapeutic perspective.


Subject(s)
Central Nervous System Stimulants , Cocaine , Neuropeptides , Nucleus Accumbens , Self Medication , Animals , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/pharmacology , Cocaine/administration & dosage , Cocaine/pharmacology , Male , Motivation/drug effects , Neuropeptides/metabolism , Neuropeptides/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Self Medication/psychology , gamma-Aminobutyric Acid/metabolism
7.
Cell Rep ; 37(5): 109910, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731606

ABSTRACT

RBFOX2, which has a well-established role in alternative splicing, is linked to heart diseases. However, it is unclear whether RBFOX2 has other roles in RNA processing that can influence gene expression in muscle cells, contributing to heart disease. Here, we employ both 3'-end and nanopore cDNA sequencing to reveal a previously unrecognized role for RBFOX2 in maintaining alternative polyadenylation (APA) signatures in myoblasts. RBFOX2-mediated APA modulates mRNA levels and/or isoform expression of a collection of genes, including contractile and mitochondrial genes. Depletion of RBFOX2 adversely affects mitochondrial health in myoblasts, correlating with disrupted APA of mitochondrial gene Slc25a4. Mechanistically, RBFOX2 regulation of Slc25a4 APA is mediated through consensus RBFOX2 binding motifs near the distal polyadenylation site, enforcing the use of the proximal polyadenylation site. In sum, our results unveil a role for RBFOX2 in fine-tuning expression of mitochondrial and contractile genes via APA in myoblasts relevant to heart diseases.


Subject(s)
Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Muscle Proteins/metabolism , Myoblasts, Cardiac/metabolism , Polyadenylation , RNA Splicing Factors/metabolism , Adenine Nucleotide Translocator 1/genetics , Adenine Nucleotide Translocator 1/metabolism , Animals , Gene Expression Regulation , HEK293 Cells , Humans , Mitochondria, Heart/genetics , Mitochondria, Heart/ultrastructure , Mitochondrial Proteins/genetics , Muscle Proteins/genetics , Myoblasts, Cardiac/ultrastructure , RNA Splicing Factors/genetics , Rats , Tropomyosin/genetics , Tropomyosin/metabolism
8.
Viruses ; 12(12)2020 12 10.
Article in English | MEDLINE | ID: mdl-33322070

ABSTRACT

Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.


Subject(s)
Computational Biology , Databases, Genetic , Metagenomics/methods , Viruses/genetics , Computational Biology/methods , Genetic Variation , Genome, Viral , Host-Pathogen Interactions , Humans , User-Computer Interface , Viral Proteins/genetics , Viral Proteins/metabolism , Viruses/metabolism , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...