Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 198(18): 2483-93, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27381915

ABSTRACT

UNLABELLED: Plants and microorganisms use two-component signal transduction systems (TCSs) to mediate responses to environmental stimuli. TCSs mediate responses through phosphotransfer from a conserved histidine on a sensor kinase to a conserved aspartate on the receiver domain of a response regulator. Typically, signal termination occurs through dephosphorylation of the receiver domain, which can catalyze its own dephosphorylation. Despite strong structural conservation between receiver domains, reported autodephosphorylation rate constants (kdephos) span a millionfold range. Variable receiver domain active-site residues D + 2 and T + 2 (two amino acids C terminal to conserved phosphorylation site and Thr/Ser, respectively) influence kdephos values, but the extent and mechanism of influence are unclear. We used sequence analysis of a large database of naturally occurring receiver domains to design mutant receiver domains for experimental analysis of autodephosphorylation kinetics. When combined with previous analyses, kdephos values were obtained for CheY variants that contained D + 2/T + 2 pairs found in 54% of receiver domain sequences. Tested pairs of amino acids at D + 2/T + 2 generally had similar effects on kdephos in CheY, PhoBN, or Spo0F. Acid or amide residues at D + 2/T + 2 enhanced kdephos CheY variants altered at D + 2/T + 2 exhibited rate constants for autophosphorylation with phosphoramidates and autodephosphorylation that were inversely correlated, suggesting that D + 2/T + 2 residues interact with aspects of the ground or transition states that differ between the two reactions. kdephos of CheY variants altered at D + 2/T + 2 correlated significantly with kdephos of wild-type receiver domains containing the same D + 2/T + 2 pair. Additionally, particular D + 2/T + 2 pairs were enriched in different response regulator subfamilies, suggesting functional significance. IMPORTANCE: One protein family, defined by a conserved domain, can include hundreds of thousands of known members. Characterizing conserved residues within a conserved domain can identify functions shared by all family members. However, a general strategy to assess features that differ between members of a family is lacking. Fully exploring the impact of just two variable positions within a conserved domain could require assessment of 400 (i.e., 20 × 20) variants. Instead, we created and analyzed a nonredundant database of receiver domain sequences. Five percent of D + 2/T + 2 pairs were sufficient to represent 50% of receiver domain sequences. Using protein sequence analysis to prioritize mutant choice made it experimentally feasible to extensively probe the influence of positions D + 2 and T + 2 on receiver domain autodephosphorylation kinetics.


Subject(s)
Conserved Sequence , Methyl-Accepting Chemotaxis Proteins/genetics , Signal Transduction/physiology , Amino Acid Substitution/genetics , Catalytic Domain/genetics , Databases, Factual , Escherichia coli/physiology , Escherichia coli Proteins , Kinetics , Methyl-Accepting Chemotaxis Proteins/chemistry , Mutation , Phosphorylation , Protein Domains , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...