Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 118(9): 097001, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306293

ABSTRACT

One of the most puzzling features of high-temperature cuprate superconductors is the pseudogap state, which appears above the temperature at which superconductivity is destroyed. There remain fundamental questions regarding its nature and its relation to superconductivity. But to address these questions, we must first determine whether the pseudogap and superconducting states share a common property: particle-hole symmetry. We introduce a new technique to test particle-hole symmetry by using laser pulses to manipulate and measure the chemical potential on picosecond time scales. The results strongly suggest that the asymmetry in the density of states is inverted in the pseudogap state, implying a particle-hole asymmetric gap. Independent of interpretation, these results can test theoretical predictions of the density of states in cuprates.

2.
Nat Commun ; 5: 4959, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25222844

ABSTRACT

Ultrafast spectroscopy is an emerging technique with great promise in the study of quantum materials, as it makes it possible to track similarities and correlations that are not evident near equilibrium. Thus far, however, the way in which these processes modify the electron self-energy--a fundamental quantity describing many-body interactions in a material--has been little discussed. Here we use time- and angle-resolved photoemission to directly measure the ultrafast response of self-energy to near-infrared photoexcitation in high-temperature cuprate superconductor. Below the critical temperature of the superconductor, ultrafast excitations trigger a synchronous decrease of electron self-energy and superconducting gap, culminating in a saturation in the weakening of electron-boson coupling when the superconducting gap is fully quenched. In contrast, electron-boson coupling is unresponsive to ultrafast excitations above the critical temperature of the superconductor and in the metallic state of a related material. These findings open a new pathway for studying transient self-energy and correlation effects in solids.

SELECTION OF CITATIONS
SEARCH DETAIL
...