Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 553: 596-606, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26938322

ABSTRACT

The feasibility of using biochar as a filter medium in stormwater treatment facilities was evaluated with a focus on ammonium retention. Successive batch extractions and batch ammonium sorption experiments were conducted in both deionized (DI) water and artificial stormwater using poultry litter (PL) and hardwood (HW) biochars pyrolyzed at 400°C and 500°C. No measureable nitrogen leached from HW biochars except 0.07 µmol/g of org-N from 400°C HW biochar. PL biochar pyrolyzed at 400°C leached 120-127 µmol/g of nitrogen but only 7.1-8.6 µmol/g of nitrogen when pyrolyzed at 500°C. Ammonium sorption was significant for all biochars. At a typical ammonium concentration of 2mg/L in stormwater, the maximum sorption was 150 mg/kg for PL biochar pryolyzed at 400°C. In stormwater, ion competition (e.g. Ca(2+)) suppressed ammonium sorption compared to DI water. Surprisingly, ammonium sorption was negatively correlated to the BET surface area of the tested biochars, but increased linearly with cation exchange capacity. Cation exchange capacity was the primary mechanism controlling ammonium sorption and was enhanced by pyrolysis at 400°C, while BET surface area was enhanced by pyrolysis at 500°C. The optimal properties (BET surface area, CEC, etc.) of biochar as a sorbent are not fixed but depend on the target pollutant. Stormwater infiltration column experiments in sand with 10% biochar removed over 90% of ammonium with influent ammonium concentration of 2mg/L, compared to only 1.7% removal in a sand-only column, indicating that kinetic limitations on sorption were minor for the storm conditions studied. Hardwood and poultry litter biochar pyrolyzed at 500°C and presumably higher temperature may be viable filter media for stormwater treatment facilities, as they showed limited release of organic and inorganic nutrients and acceptable ammonium sorption.


Subject(s)
Ammonium Compounds/analysis , Charcoal , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Animal Husbandry , Animals , Industrial Waste , Nitrogen , Poultry
2.
Contrast Media Mol Imaging ; 8(1): 72-82, 2013.
Article in English | MEDLINE | ID: mdl-23109395

ABSTRACT

A new noninvasive, nonradioactive approach for glucose imaging using spin hyperpolarization technology and stable isotope labeling is presented. A glucose analog labeled with (13)C at all six positions increased the overall hyperpolarized imaging signal; deuteration at all seven directly bonded proton positions prolonged the spin-lattice relaxation time. High-bandwidth (13)C imaging overcame the large glucose carbon chemical shift dispersion. Hyperpolarized glucose images in the live rat showed time-dependent organ distribution patterns. At 8 s after the start of bolus injection, the inferior vena cava was demonstrated at angiographic quality. Distribution of hyperpolarized glucose in the kidneys, vasculature, and heart was demonstrated at 12 and 20 s. The heart-to-vasculature intensity ratio at 20 s suggests myocardial uptake. Cancer imaging, currently performed with (18)F-deoxyglucose positron emission tomography (FDG-PET), warrants further investigation, and glucose imaging could be useful in a vast range of clinical conditions and research fields where the radiation associated with the FDG-PET examination limits its use.


Subject(s)
Fluorodeoxyglucose F18/pharmacology , Glucose/metabolism , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacology , Animals , Carbon Isotopes , Male , Radiography , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...