Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 24(47): 10628-35, 2004 Nov 24.
Article in English | MEDLINE | ID: mdl-15564578

ABSTRACT

The hypothalamic-pituitary-adrenal axis regulates mammalian stress responses by secreting glucocorticoids. The magnitude of the response is in part determined by gender, for in response to a given stressor, circulating glucocorticoids reach higher levels in female rats than in males. This gender difference could result from estrogen regulation of the corticotropin-releasing hormone (CRH) promoter via either of its receptors: estrogen receptor (ER)alpha or ERbeta. Immunocytochemistry revealed that a subset (12%) of medial parvocellular CRH neurons in the rat hypothalamus contain ERbeta but not ERalpha. To determine whether ERs could regulate CRH promoter activity, we cotransfected cells with a CRH promoter construct and either ERalpha or individual ERbeta isoforms. ERalpha weakly stimulated CRH promoter transcriptional activity in a ligand-independent manner. Conversely, all ERbeta isoforms tested stimulated CRH promoter activity with different ligand profiles. ERbeta1 and ERbeta2delta3 displayed constitutive activity (ERbeta1 more than ERbeta2delta3). Ligand-dependent activity of beta isoforms 1 and 2 was altered by an Exon3 splice variant (delta3) or by the additional 18 amino acids in the ligand-binding domain of ERbeta2 isoforms. Lastly, we suggest that ER regulation of CRH takes place through an alternate pathway, one that requires protein-protein interactions with other transcription factors or their associated complexes. However, a pure ER-activator protein-1 alternate pathway does not appear to be involved.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Estrogen Receptor beta/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Animals , Estrogen Receptor alpha/physiology , Female , Gene Expression Regulation , HeLa Cells , Humans , Immunohistochemistry , Paraventricular Hypothalamic Nucleus/cytology , Promoter Regions, Genetic , Protein Isoforms/physiology , Rats , Rats, Sprague-Dawley , Transcription Factor AP-1/physiology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...