Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1607, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338132

ABSTRACT

The wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat. This gene encodes a tandem kinase, homologues of which exist across multiple taxa in the plant kingdom. Stable Sr62 transgenic wheat lines show high levels of resistance against diverse isolates of the stem rust pathogen, highlighting the utility of Sr62 for deployment as part of a polygenic stack to maximize the durability of stem rust resistance.


Subject(s)
Aegilops , Basidiomycota , Aegilops/genetics , Basidiomycota/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
2.
Plant J ; 110(1): 179-192, 2022 04.
Article in English | MEDLINE | ID: mdl-34997796

ABSTRACT

Aegilops is a close relative of wheat (Triticum spp.), and Aegilops species in the section Sitopsis represent a rich reservoir of genetic diversity for the improvement of wheat. To understand their diversity and advance their utilization, we produced whole-genome assemblies of Aegilops longissima and Aegilops speltoides. Whole-genome comparative analysis, along with the recently sequenced Aegilops sharonensis genome, showed that the Ae. longissima and Ae. sharonensis genomes are highly similar and are most closely related to the wheat D subgenome. By contrast, the Ae. speltoides genome is more closely related to the B subgenome. Haplotype block analysis supported the idea that Ae. speltoides genome is closest to the wheat B subgenome, and highlighted variable and similar genomic regions between the three Aegilops species and wheat. Genome-wide analysis of nucleotide-binding leucine-rich repeat (NLR) genes revealed species-specific and lineage-specific NLR genes and variants, demonstrating the potential of Aegilops genomes for wheat improvement.


Subject(s)
Aegilops , Aegilops/genetics , Genome, Plant/genetics , Phylogeny , Poaceae/genetics , Triticum/genetics
3.
BMC Plant Biol ; 20(1): 153, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32272895

ABSTRACT

BACKGROUND: Leaf and stripe rusts are two major wheat diseases, causing significant yield losses. The preferred way for protecting wheat from rust pathogens is by introgression of rust resistance traits from wheat-related wild species. To avoid genetic drag due to replacement of large wheat chromosomal segments by the alien chromatin, it is necessary to shorten the alien chromosome segment in primary recombinants. RESULTS: Here we report on shortening of an alien chromosome segment in wheat that carries leaf and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis). Rust resistant wheat introgression lines were selected and the alien region was mapped using genotyping by sequencing. Single polymorphic nucleotides (SNP) were identified and used to generate diagnostic PCR markers. Shortening of the alien fragment was achieved by induced homoeologous pairing and lines with shortened alien chromosome were identified using the PCR markers. Further reduction of the segment was achieved in tertiary recombinants without losing the rust resistance. CONCLUSIONS: Alien chromatin in wheat with novel rust resistance genes was characterized by SNP markers and shortened by homoeologous recombination to avoid deleterious traits. The resulting wheat lines are resistant to highly virulent races of leaf and stripe rust pathogens and can be used as both resistant wheat in the field and source for gene transfer to other wheat lines/species.


Subject(s)
Aegilops/genetics , Plant Breeding , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Aegilops/metabolism , Disease Resistance/genetics , Genetic Markers , Plant Diseases/microbiology , Polymerase Chain Reaction , Triticum/metabolism
4.
Theor Appl Genet ; 130(6): 1207-1222, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28275817

ABSTRACT

KEY MESSAGE: We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen. Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Poaceae/genetics , Basidiomycota , Chromosome Mapping , Genetic Association Studies , Genetic Linkage , Linear Models , Linkage Disequilibrium , Models, Genetic , Phenotype , Plant Diseases/microbiology , Poaceae/microbiology , Quantitative Trait Loci
5.
Plant Genome ; 10(3)2017 11.
Article in English | MEDLINE | ID: mdl-29293809

ABSTRACT

Many accessions of the wheat wild relative Sharon goatgrass ( Eig., ) are resistant to African races of the stem rust pathogen (i.e., Ug99 group races), which currently threaten wheat production worldwide. A procedure was designed to introgress the respective resistances to specific bread wheat genomes by producing plants homozygous for the A and B genomes and hemizygous for the D and S genomes or homozygous for the A and D genomes and hemizygous for the B and S genomes. In these genotypes, which lack the allele, homeologous pairing was expected mainly between chromosomes of the D and S genomes or B and S genomes, respectively. An antigametocidal (AG) wheat mutant () was used to overcome gametocidal effects. Wheat lines initially found resistant at the seedling stage were also highly resistant at the adult plant stage in rust nurseries established in the field. DNA of 41 selected homozygous resistant lines, analyzed by the Axiom wheat 820K SNP array, showed alien chromatin mainly in wheat chromosomes 1B, 1D, and 5B. This work suggests that, in most cases, it is possible to target introgressions into the homeologous chromosome of a selected genome of bread wheat.


Subject(s)
Basidiomycota/pathogenicity , Genome, Plant , Triticum/genetics , Triticum/microbiology , DNA Copy Number Variations , DNA, Plant/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...