Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31632600

ABSTRACT

The prediction and characterization of outbreaks of infectious diseases such as influenza remains an open and important problem. This paper describes a framework for detecting and characterizing outbreaks of influenza and the results of testing it on data from ten outbreaks collected from two locations over five years. We model outbreaks with compartment models and explicitly model non-influenza influenza-like illnesses.

2.
J Biomed Inform ; 73: 171-181, 2017 09.
Article in English | MEDLINE | ID: mdl-28797710

ABSTRACT

Outbreaks of infectious diseases such as influenza are a significant threat to human health. Because there are different strains of influenza which can cause independent outbreaks, and influenza can affect demographic groups at different rates and times, there is a need to recognize and characterize multiple outbreaks of influenza. This paper describes a Bayesian system that uses data from emergency department patient care reports to create epidemiological models of overlapping outbreaks of influenza. Clinical findings are extracted from patient care reports using natural language processing. These findings are analyzed by a case detection system to create disease likelihoods that are passed to a multiple outbreak detection system. We evaluated the system using real and simulated outbreaks. The results show that this approach can recognize and characterize overlapping outbreaks of influenza. We describe several extensions that appear promising.


Subject(s)
Bayes Theorem , Disease Outbreaks , Influenza, Human/epidemiology , Communicable Diseases , Humans , Probability
3.
PLoS One ; 12(4): e0174970, 2017.
Article in English | MEDLINE | ID: mdl-28380048

ABSTRACT

OBJECTIVES: This study evaluates the accuracy and transferability of Bayesian case detection systems (BCD) that use clinical notes from emergency department (ED) to detect influenza cases. METHODS: A BCD uses natural language processing (NLP) to infer the presence or absence of clinical findings from ED notes, which are fed into a Bayesain network classifier (BN) to infer patients' diagnoses. We developed BCDs at the University of Pittsburgh Medical Center (BCDUPMC) and Intermountain Healthcare in Utah (BCDIH). At each site, we manually built a rule-based NLP and trained a Bayesain network classifier from over 40,000 ED encounters between Jan. 2008 and May. 2010 using feature selection, machine learning, and expert debiasing approach. Transferability of a BCD in this study may be impacted by seven factors: development (source) institution, development parser, application (target) institution, application parser, NLP transfer, BN transfer, and classification task. We employed an ANOVA analysis to study their impacts on BCD performance. RESULTS: Both BCDs discriminated well between influenza and non-influenza on local test cases (AUCs > 0.92). When tested for transferability using the other institution's cases, BCDUPMC discriminations declined minimally (AUC decreased from 0.95 to 0.94, p<0.01), and BCDIH discriminations declined more (from 0.93 to 0.87, p<0.0001). We attributed the BCDIH decline to the lower recall of the IH parser on UPMC notes. The ANOVA analysis showed five significant factors: development parser, application institution, application parser, BN transfer, and classification task. CONCLUSION: We demonstrated high influenza case detection performance in two large healthcare systems in two geographically separated regions, providing evidentiary support for the use of automated case detection from routinely collected electronic clinical notes in national influenza surveillance. The transferability could be improved by training Bayesian network classifier locally and increasing the accuracy of the NLP parser.


Subject(s)
Decision Support Techniques , Influenza, Human/diagnosis , Technology Transfer , Adolescent , Adult , Aged , Bayes Theorem , Child , Child, Preschool , Delivery of Health Care , Electronic Health Records , Emergency Service, Hospital , Humans , Infant , Infant, Newborn , Machine Learning , Middle Aged , Natural Language Processing , Reproducibility of Results , Young Adult
4.
J Theor Biol ; 279(1): 74-82, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21457720

ABSTRACT

We investigate a spatial lattice model of a population employing dispersal to nearest and second-nearest neighbors, as well as long-distance dispersal across the landscape. The model is studied via stochastic spatial simulations, ordinary pair approximation, and triplet approximation. The latter method, which uses the probabilities of state configurations of contiguous blocks of three sites as its state variables, is demonstrated to be greatly superior to pair approximations for estimating spatial correlation information at various scales. Correlations between pairs of sites separated by arbitrary distances are estimated by constructing spatial Markov processes using the information from both approximations. These correlations demonstrate why pair approximation misses basic qualitative features of the model, such as decreasing population density as a large proportion of offspring are dropped on second-nearest neighbors, and why triplet approximation is able to include them. Analytical and numerical results show that, excluding long-distance dispersal, the initial growth rate of an invading population is maximized and the equilibrium population density is also roughly maximized when the population spreads its offspring evenly over nearest and second-nearest neighboring sites.


Subject(s)
Emigration and Immigration , Markov Chains , Models, Biological , Population Dynamics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...