Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 95(8): 800-809, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-37863245

ABSTRACT

BACKGROUND: Hyperactivity of granule cells in the ventral dentate gyrus (vDG) promotes vulnerability to chronic stress. However, which receptors in the vDG could be targeted to inhibit this hyperactivity and confer stress resilience is not known. The serotonin 1A receptor (5-HT1AR) is a Gi protein-coupled inhibitory receptor that has been implicated in stress adaptation, anxiety, depression, and antidepressant responses. 5-HT1ARs are highly expressed in the DG, but their potential to promote stress resilience by regulating granule cell activity has never been examined. METHODS: We exposed male and female mice expressing 5-HT1ARs only in DG granule cells to 10 days of chronic social defeat stress (CSDS) and treated them with the 5-HT1AR agonist 8-OH-DPAT every day 30 minutes before each defeat throughout the CSDS paradigm. We then used whole-cell current clamp recordings, immunohistochemistry for the immediate early gene cFos, corticosterone immunoassays, and behavioral testing to determine how activating 5-HT1ARs on granule cells affects DG activity, neuroendocrine stress responses, and avoidance behavior. RESULTS: We found that activating 5-HT1ARs hyperpolarized DG granule cells and reduced cFos+ granule cells in the vDG following CSDS, indicating that 5-HT1AR activation rescued stress-induced vDG hyperactivity. Moreover, 5-HT1AR activation dampened corticosterone responses to CSDS and prevented the development of stress-induced avoidance in the social interaction test and in the open field test. CONCLUSIONS: Our findings show that activating 5-HT1ARs on DG granule cells can prevent stress-induced neuronal hyperactivity of the vDG and confer resilience to chronic stress.


Subject(s)
Resilience, Psychological , Serotonin , Mice , Male , Female , Animals , Receptor, Serotonin, 5-HT1A , Corticosterone , Dentate Gyrus , Stress, Psychological
2.
Science ; 364(6440): 578-583, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31073064

ABSTRACT

Young adult-born granule cells (abGCs) in the dentate gyrus (DG) have a profound impact on cognition and mood. However, it remains unclear how abGCs distinctively contribute to local DG information processing. We found that the actions of abGCs in the DG depend on the origin of incoming afferents. In response to lateral entorhinal cortex (LEC) inputs, abGCs exert monosynaptic inhibition of mature granule cells (mGCs) through group II metabotropic glutamate receptors. By contrast, in response to medial entorhinal cortex (MEC) inputs, abGCs directly excite mGCs through N-methyl-d-aspartate receptors. Thus, a critical function of abGCs may be to regulate the relative synaptic strengths of LEC-driven contextual information versus MEC-driven spatial information to shape distinct neural representations in the DG.


Subject(s)
Dentate Gyrus/physiology , Entorhinal Cortex/physiology , Hippocampus/physiology , Neurons/physiology , Animals , Cells, Cultured , Evoked Potentials , Humans , Mice , Mice, Transgenic , Receptors, N-Methyl-D-Aspartate/physiology , Synapses/physiology
3.
Nature ; 559(7712): 98-102, 2018 07.
Article in English | MEDLINE | ID: mdl-29950730

ABSTRACT

Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by environmental influences, and functionally implicated in behavioural responses to stress and antidepressants1-4. However, how adult-born neurons regulate dentate gyrus information processing to protect from stress-induced anxiety-like behaviour is unknown. Here we show in mice that neurogenesis confers resilience to chronic stress by inhibiting the activity of mature granule cells in the ventral dentate gyrus (vDG), a subregion that is implicated in mood regulation. We found that chemogenetic inhibition of adult-born neurons in the vDG promotes susceptibility to social defeat stress, whereas increasing neurogenesis confers resilience to chronic stress. By using in vivo calcium imaging to record neuronal activity from large cell populations in the vDG, we show that increased neurogenesis results in a decrease in the activity of stress-responsive cells that are active preferentially during attacks or while mice explore anxiogenic environments. These effects on dentate gyrus activity are necessary and sufficient for stress resilience, as direct silencing of the vDG confers resilience whereas excitation promotes susceptibility. Our results suggest that the activity of the vDG may be a key factor in determining individual levels of vulnerability to stress and related psychiatric disorders.


Subject(s)
Dentate Gyrus/cytology , Dentate Gyrus/physiology , Neurogenesis/physiology , Resilience, Psychological , Affect , Animals , Calcium/analysis , Chronic Disease , Male , Mice , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...