Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(9): 105101, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37507020

ABSTRACT

The C-terminal domain of the cellular prion protein (PrPC) contains two N-linked glycosylation sites, the occupancy of which impacts disease pathology. In this study, we demonstrate that glycans at these sites are required to maintain an intramolecular interaction with the N-terminal domain, mediated through a previously identified copper-histidine tether, which suppresses the neurotoxic activity of PrPC. NMR and electron paramagnetic resonance spectroscopy demonstrate that the glycans refine the structure of the protein's interdomain interaction. Using whole-cell patch-clamp electrophysiology, we further show that cultured cells expressing PrP molecules with mutated glycosylation sites display large, spontaneous inward currents, a correlate of PrP-induced neurotoxicity. Our findings establish a structural basis for the role of N-linked glycans in maintaining a nontoxic, physiological fold of PrPC.

2.
Inorg Chem ; 61(37): 14626-14640, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36073854

ABSTRACT

Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid ß (Aß) peptide is central to disease pathology, which is supported by elevated Aß levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aß, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aß(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aß(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aß(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aß(1-42) species in solution, leaving a single Cu(II)Aß(1-42) species. It follows that the Cu(II) site in this Cu(II)Aß(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aß(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aß(1-42).


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Clioquinol , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/chemistry , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Clioquinol/analogs & derivatives , Clioquinol/chemistry , Copper/chemistry , Humans , Ions , Metals , Oxyquinoline/chemistry , Oxyquinoline/pharmacology , Peptide Fragments , Solvents , Zinc
3.
Methods Enzymol ; 666: 297-314, 2022.
Article in English | MEDLINE | ID: mdl-35465923

ABSTRACT

Most proteins implicated in neurodegenerative diseases bind metal ions, notably copper and zinc. Metal ion binding may be part of the protein's function or, alternatively, may promote a deleterious gain of function. With regard to Cu2+ ions, electron paramagnetic resonance techniques have proven to be instrumental in determining the biophysical characteristics of the copper binding sites, as well as structural features of the coordinating protein and how they are impacted by metal binding. Here, the most useful methods are described as they apply to the prion protein, which serves as a model for the broader spectrum of neurodegenerative proteins.


Subject(s)
Prion Proteins , Prions , Binding Sites , Copper/chemistry , Electron Spin Resonance Spectroscopy/methods , Prion Proteins/chemistry , Prion Proteins/metabolism , Prions/chemistry , Prions/metabolism , Zinc/metabolism
4.
ACS Appl Bio Mater ; 4(9): 7025-7033, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006935

ABSTRACT

Graphene derivatives have been attracting extensive interest as effective antimicrobial agents. In the present study, ternary nanocomposites are prepared based on graphene oxide quantum dots (GOQD), polyaniline (PANI), and manganese oxides. Because of the hydrophilic GOQD and PANI, the resulting GPM nanocomposites are readily dispersible in water and upon photoirradiation at 365 nm exhibit antimicrobial activity toward both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus epidermidis (S. epidermidis). Notably, the nanocomposite with a high Mn2+ and Mn4+ content is found to be far more active than that with a predominant Mn3+ component, although both samples feature a similar elemental composition and average Mn valence state. The bactericidal activity is largely ascribed to the photocatalytic production of hydroxy radicals and photogenerated holes; both are known to exert oxidative stress on bacterial cells. Further antimicrobial contributions may arise from the strong affinity of the nanocomposites to the cell surfaces. These results suggest that the metal valence state may be a critical parameter in the design and engineering of high-performance antimicrobial agents based on metal oxide nanocomposites.


Subject(s)
Anti-Infective Agents , Graphite , Aniline Compounds , Anti-Bacterial Agents/pharmacology , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Graphite/pharmacology , Manganese Compounds , Oxides/pharmacology
5.
Proc Natl Acad Sci U S A ; 117(46): 28625-28631, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139554

ABSTRACT

Evidence linking amyloid beta (Aß) cellular uptake and toxicity has burgeoned, and mechanisms underlying this association are subjects of active research. Two major, interconnected questions are whether Aß uptake is aggregation-dependent and whether it is sequence-specific. We recently reported that the neuronal uptake of Aß depends significantly on peptide chirality, suggesting that the process is predominantly receptor-mediated. Over the past decade, the cellular prion protein (PrPC) has emerged as an important mediator of Aß-induced toxicity and of neuronal Aß internalization. Here, we report that the soluble, nonfibrillizing Aß (1-30) peptide recapitulates full-length Aß stereoselective cellular uptake, allowing us to decouple aggregation from cellular, receptor-mediated internalization. Moreover, we found that Aß (1-30) uptake is also dependent on PrPC expression. NMR-based molecular-level characterization identified the docking site on PrPC that underlies the stereoselective binding of Aß (1-30). Our findings therefore identify a specific sequence within Aß that is responsible for the recognition of the peptide by PrPC, as well as PrPC-dependent cellular uptake. Further uptake stereodifferentiation in PrPC-free cells points toward additional receptor-mediated interactions as likely contributors for Aß cellular internalization. Taken together, our results highlight the potential of targeting cellular surface receptors to inhibit Aß cellular uptake as an alternative route for future therapeutic development for Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , PrPC Proteins/metabolism , HEK293 Cells , Humans
6.
Inorg Chem ; 59(23): 17519-17534, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33226796

ABSTRACT

PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) is a small Cu(II)-binding drug that has been investigated in the treatment of neurodegenerative diseases, namely, Alzheimer's disease (AD). PBT2 is thought to be highly effective at crossing the blood-brain barrier and has been proposed to exert anti-Alzheimer's effects through the modulation of metal ion concentrations in the brain, specifically the sequestration of Cu(II) from amyloid plaques. However, despite promising initial results in animal models and in clinical trials where PBT2 was shown to improve cognitive function, larger-scale clinical trials did not find PBT2 to have a significant effect on the amyloid plaque burden compared with controls. We propose that the results of these clinical trials likely point to a more complex mechanism of action for PBT2 other than simple Cu(II) sequestration. To this end, herein we have investigated the solution chemistry of Cu(II) coordination by PBT2 primarily using X-ray absorption spectroscopy (XAS), high-energy-resolution fluorescence-detected XAS, and electron paramagnetic resonance. We propose that a novel bis-PBT2 Cu(II) complex with asymmetric coordination may coexist in solution with a symmetric four-coordinate Cu(II)-bis-PBT2 complex distorted from coplanarity. Additionally, PBT2 is a more flexible ligand than other 8HQs because it can act as both a bidentate and a tridentate ligand as well as coordinate Cu(II) in both 1:1 and 2:1 PBT2/Cu(II) complexes.


Subject(s)
Alzheimer Disease/drug therapy , Chelating Agents/therapeutic use , Clioquinol/analogs & derivatives , Coordination Complexes/therapeutic use , Copper/therapeutic use , Neuroprotective Agents/pharmacology , Proteostasis Deficiencies/drug therapy , Animals , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Clioquinol/chemistry , Clioquinol/therapeutic use , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Density Functional Theory , Humans , Ligands , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , X-Ray Absorption Spectroscopy
7.
J Biol Chem ; 295(48): 16370-16379, 2020 11 27.
Article in English | MEDLINE | ID: mdl-32943551

ABSTRACT

The melanocortin receptor accessory protein 2 (MRAP2) plays a pivotal role in the regulation of several G protein-coupled receptors that are essential for energy balance and food intake. MRAP2 loss-of-function results in obesity in mammals. MRAP2 and its homolog MRAP1 have an unusual membrane topology and are the only known eukaryotic proteins that thread into the membrane in both orientations. In this study, we demonstrate that the conserved polybasic motif that dictates the membrane topology and dimerization of MRAP1 does not control the membrane orientation and dimerization of MRAP2. We also show that MRAP2 dimerizes through its transmembrane domain and can form higher-order oligomers that arrange MRAP2 monomers in a parallel orientation. Investigating the molecular details of MRAP2 structure is essential for understanding the mechanism by which it regulates G protein-coupled receptors and will aid in elucidating the pathways involved in metabolic dysfunction.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Protein Multimerization , Adaptor Proteins, Signal Transducing/genetics , Cell Membrane/genetics , HEK293 Cells , Humans , Protein Domains
8.
J Mol Biol ; 432(16): 4408-4425, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32473880

ABSTRACT

The cellular prion protein (PrPC) comprises two domains: a globular C-terminal domain and an unstructured N-terminal domain. Recently, copper has been observed to drive tertiary contact in PrPC, inducing a neuroprotective cis interaction that structurally links the protein's two domains. The location of this interaction on the C terminus overlaps with the sites of human pathogenic mutations and toxic antibody docking. Combined with recent evidence that the N terminus is a toxic effector regulated by the C terminus, there is an emerging consensus that this cis interaction serves a protective role, and that the disruption of this interaction by misfolded PrP oligomers may be a cause of toxicity in prion disease. We demonstrate here that two highly conserved histidines in the C-terminal domain of PrPC are essential for the protein's cis interaction, which helps to protect against neurotoxicity carried out by its N terminus. We show that simultaneous mutation of these histidines drastically weakens the cis interaction and enhances spontaneous cationic currents in cultured cells, the first C-terminal mutant to do so. Whereas previous studies suggested that Cu2+ coordination was localized solely to the protein's N-terminal domain, we find that both domains contribute equatorially coordinated histidine residue side-chains, resulting in a novel bridging interaction. We also find that extra N-terminal histidines in pathological familial mutations involving octarepeat expansions inhibit this interaction by sequestering copper from the C terminus. Our findings further establish a structural basis for PrPC's C-terminal regulation of its otherwise toxic N terminus.


Subject(s)
Copper/metabolism , Mutation , Prion Proteins/chemistry , Prion Proteins/metabolism , Animals , DNA Repeat Expansion , Histidine/metabolism , Mice , Models, Molecular , Molecular Dynamics Simulation , Prion Proteins/genetics , Protein Conformation , Protein Domains , Protein Folding
9.
FASEB J ; 34(6): 8734-8748, 2020 06.
Article in English | MEDLINE | ID: mdl-32385908

ABSTRACT

The conserved central region (CR) of PrPC has been hypothesized to serve as a passive linker connecting the protein's toxic N-terminal and globular C-terminal domains. Yet, deletion of the CR causes neonatal fatality in mice, implying the CR possesses a protective function. The CR encompasses the regulatory α-cleavage locus, and additionally facilitates a regulatory metal ion-promoted interaction between the PrPC N- and C-terminal domains. To elucidate the role of the CR and determine why CR deletion generates toxicity, we designed PrPC constructs wherein either the cis-interaction or α-cleavage are selectively prevented. These constructs were interrogated using nuclear magnetic resonance, electrophysiology, and cell viability assays. Our results demonstrate the CR is not a passive linker and the native sequence is crucial for its protective role over the toxic N-terminus, irrespective of α-cleavage or the cis-interaction. Additionally, we find that the CR facilitates homodimerization of PrPC , attenuating the toxicity of the N-terminus.


Subject(s)
Conserved Sequence/physiology , PrPC Proteins/metabolism , Prion Proteins/metabolism , Cell Line , Cell Survival/physiology , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy/methods
10.
Science ; 368(6489): 428-433, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32327598

ABSTRACT

The melanocortin-4 receptor (MC4R) is involved in energy homeostasis and is an important drug target for syndromic obesity. We report the structure of the antagonist SHU9119-bound human MC4R at 2.8-angstrom resolution. Ca2+ is identified as a cofactor that is complexed with residues from both the receptor and peptide ligand. Extracellular Ca2+ increases the affinity and potency of the endogenous agonist α-melanocyte-stimulating hormone at the MC4R by 37- and 600-fold, respectively. The ability of the MC4R crystallized construct to couple to ion channel Kir7.1, while lacking cyclic adenosine monophosphate stimulation, highlights a heterotrimeric GTP-binding protein (G protein)-independent mechanism for this signaling modality. MC4R is revealed as a structurally divergent G protein-coupled receptor (GPCR), with more similarity to lipidic GPCRs than to the homologous peptidic GPCRs.


Subject(s)
Calcium/chemistry , Receptor, Melanocortin, Type 4/chemistry , Receptors, G-Protein-Coupled/chemistry , Crystallography, X-Ray , Cyclic AMP/chemistry , Humans , Ligands , Melanocyte-Stimulating Hormones/chemistry , Melanocyte-Stimulating Hormones/pharmacology , Mutation , Potassium Channels, Inwardly Rectifying/chemistry , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/genetics , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Signal Transduction
11.
J Phys Chem Lett ; 11(3): 1162-1169, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31967831

ABSTRACT

Mn-doped CsPbBr3 perovskite magic sized clusters (PMSCs) are synthesized for the first time using benzoic acid and benzylamine as passivating ligands and MnCl2·4H2O and MnBr2 as the Mn2+ dopant sources at room temperature. The same approach is used to prepare Mn-doped CsPbBr3 perovskite quantum dots (PQDs). The concentration of MnX2 (X = Cl or Br) affects the excitonic absorption of the PMSCs and PQDs. A higher concentration of MnX2 favors PMSCs over PQDs as well as higher photoluminescence (PL) quantum yields (QYs) and PL stability. The large ratio between the characteristic Mn emission (∼590 nm) and the host band-edge emission shows efficient energy transfer from the host exciton to the Mn2+ dopant. PL excitation, electron paramagnetic resonance, and time-resolved PL results all support Mn2+ doping in CsPbBr3, which likely replaces Pb2+ ions. This study establishes a new method for synthesizing Mn-doped PMSCs with good PL stability, high PLQY and highly effective passivation.

12.
Nanoscale Adv ; 2(3): 1074-1083, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-36133054

ABSTRACT

Design and engineering of graphene-based functional nanomaterials for effective antimicrobial applications has been attracting extensive interest. In the present study, graphene oxide quantum dots (GOQDs) were prepared by chemical exfoliation of carbon fibers and exhibited apparent antimicrobial activity. Transmission electron microscopic measurements showed that the lateral length ranged from a few tens to a few hundred nanometers. Upon reduction by sodium borohydride, whereas the UV-vis absorption profile remained largely unchanged, steady-state photoluminescence measurements exhibited a marked blue-shift and increase in intensity of the emission, due to (partial) removal of phenanthroline-like structural defects within the carbon skeletons. Consistent results were obtained in Raman and time-resolved photoluminescence measurements. Interestingly, the samples exhibited apparent, but clearly different, antimicrobial activity against Staphylococcus epidermidis cells. In the dark and under photoirradiation (400 nm), the as-produced GOQDs exhibited markedly higher cytotoxicity than the chemically reduced counterparts, likely because of (i) effective removal by NaBH4 reduction of redox-active phenanthroline-like moieties that interacted with the electron-transport chain of the bacterial cells, and (ii) diminished production of hydroxyl radicals that were potent bactericidal agents after chemical reduction as a result of increased conjugation within the carbon skeletons.

13.
J Org Chem ; 85(3): 1687-1690, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31692356

ABSTRACT

Bacterially expressed proteins used in NMR studies lack glycans, and proteins from other organisms are neither 15N labeled nor glycosylated homogeneously. Here, we add two artificial glycans to uniformly 15N labeled prion protein using a buffer system that evolves over a pH range to accommodate the conflicting pH requirements of the substrate and enzymes without the need to fine-tune buffer conditions. NMR and CD spectroscopy of the protein indicates that the glycans do not influence its fold.


Subject(s)
Polysaccharides , Prion Proteins , Hydrogen-Ion Concentration , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
14.
iScience ; 22: 557-570, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31863782

ABSTRACT

The endogenous melanocortin peptide agouti-related protein (AgRP) plays a well-known role in foraging, but its contribution to metabolic regulation is less understood. Mature AgRP(83-132) has distinct residues for melanocortin receptor binding and heparan sulfate interactions. Here, we show that AgRP increases ad libitum feeding and operant responding for food in mice, decreases oxygen consumption, and lowers body temperature and activity, indicating lower energy expenditure. AgRP increased the respiratory exchange ratio, indicating a reduction of fat oxidation and a shift toward carbohydrates as the primary fuel source. The duration and intensity of AgRP's effects depended on the density of its positively charged amino acids, suggesting that its orexigenic and metabolic effects depend on its affinity for heparan sulfate. These findings may have major clinical implications by unveiling the critical involvement of interactions between AgRP and heparan sulfate to the central regulation of energy expenditure, fat utilization, and possibly their contribution to metabolic disease.

15.
Structure ; 27(6): 907-922.e5, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30956132

ABSTRACT

The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.


Subject(s)
Copper/chemistry , Molecular Dynamics Simulation , Mutation , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Domains , Animals , Cell Line , Copper/metabolism , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Mice , Prion Proteins/metabolism , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tandem Mass Spectrometry/methods
16.
Inorg Chem ; 58(9): 6294-6311, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31013069

ABSTRACT

Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aß) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aß, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aß via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aß in vitro, there is still uncertainty surrounding Cu(II) coordination in Aß. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aß(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aß(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aß(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aß(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aß(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aß(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.


Subject(s)
Amyloid beta-Peptides/chemistry , Copper/chemistry , Histidine/chemistry , Peptide Fragments/chemistry , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Copper/metabolism , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Oxidation-Reduction , Peptide Fragments/metabolism , X-Ray Absorption Spectroscopy
17.
Biophys J ; 116(4): 610-620, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30678993

ABSTRACT

The cellular prion protein (PrPC) is a zinc-binding protein that contributes to the regulation of Zn2+ and other divalent species of the central nervous system. Zn2+ coordinates to the flexible, N-terminal repeat region of PrPC and drives a tertiary contact between this repeat region and a well-defined cleft of the C-terminal domain. The tertiary structure promoted by Zn2+ is thought to regulate inherent PrPC toxicity. Despite the emerging consensus regarding the interaction between Zn2+ and PrPC, there is little direct spectroscopic confirmation of the metal ion's coordination details. Here, we address this conceptual gap by using Cd2+ as a surrogate for Zn2+. NMR finds that Cd2+ binds exclusively to the His imidazole side chains of the repeat segment, with a dissociation constant of ∼1.2 mM, and promotes an N-terminal-C-terminal cis interaction very similar to that observed with Zn2+. Analysis of 113Cd NMR spectra of PrPC, along with relevant control proteins and peptides, suggests that coordination of Cd2+ in the full-length protein is consistent with a three- or four-His geometry. Examination of the mutation E199K in mouse PrPC (E200K in humans), responsible for inherited Creutzfeldt-Jakob disease, finds that the mutation lowers metal ion affinity and weakens the cis interaction. These findings not only provide deeper insight into PrPC metal ion coordination but they also suggest new perspectives on the role of familial mutations in prion disease.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Prion Proteins/chemistry , Prion Proteins/metabolism , Zinc/metabolism , Amino Acid Sequence , Binding Sites , Cadmium/chemistry , Histidine/chemistry , Imidazoles/chemistry , Models, Molecular , Mutation , Prion Proteins/genetics , Protein Binding
18.
J Neuroendocrinol ; 31(1): e12670, 2019 01.
Article in English | MEDLINE | ID: mdl-30561082

ABSTRACT

Energy stores in fat tissue are determined in part by the activity of hypothalamic neurones expressing the melanocortin-4 receptor (MC4R). Even a partial reduction in MC4R expression levels in mice, rats or humans produces hyperphagia and morbid obesity. Thus, it is of great interest to understand the molecular basis of neuromodulation by the MC4R. The MC4R is a G protein-coupled receptor that signals efficiently through GαS , and this signalling pathway is essential for normal MC4R function in vivo. However, previous data from hypothalamic slice preparations indicated that activation of the MC4R depolarised neurones via G protein-independent regulation of the ion channel Kir7.1. In the present study, we show that deletion of Kcnj13 (ie, the gene encoding Kir7.1) specifically from MC4R neurones produced resistance to melanocortin peptide-induced depolarisation of MC4R paraventricular nucleus neurones in brain slices, resistance to the sustained anorexic effect of exogenously administered melanocortin peptides, late onset obesity, increased linear growth and glucose intolerance. Some MC4R-mediated phenotypes appeared intact, including Agouti-related peptide-induced stimulation of food intake and MC4R-mediated induction of peptide YY release from intestinal L cells. Thus, a subset of the consequences of MC4R signalling in vivo appears to be dependent on expression of the Kir7.1 channel in MC4R cells.


Subject(s)
Hypothalamus/physiopathology , Neurons/physiology , Obesity/physiopathology , Potassium Channels, Inwardly Rectifying/physiology , Receptor, Melanocortin, Type 4/physiology , Animals , Feeding Behavior/physiology , Female , Male , Membrane Potentials , Mice, Inbred C57BL , Mice, Knockout , Potassium Channels, Inwardly Rectifying/genetics
19.
Nanoscale ; 10(1): 158-166, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29143052

ABSTRACT

Synthesis of new, highly active antibacterial agents has become increasingly important in light of emerging antibiotic resistance. In the present study, ZnO/graphene quantum dot (GQD) nanocomposites were produced by a facile hydrothermal method and characterized by an array of microscopic and spectroscopic measurements, including transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis and photoluminescence spectroscopy. Antibacterial activity of the ZnO/GQD nanocomposites was evaluated with Escherichia coli within the context of minimum inhibitory concentration and the reduction of the number of bacterial colonies in a standard plate count method, in comparison to those with ZnO and GQD separately. It was found that the activity was markedly enhanced under UV photoirradiation as compared to that in ambient light. This was ascribed to the enhanced generation of reactive oxygen species under UV photoirradiation, with minor contributions from membrane damage, as manifested in electron paramagnetic resonance and fluorescence microscopic measurements. The results highlight the significance of functional nanocomposites based on semiconductor nanoparticles and graphene derivatives in the development of effective bactericidal agents.

20.
Prog Mol Biol Transl Sci ; 150: 35-56, 2017.
Article in English | MEDLINE | ID: mdl-28838668

ABSTRACT

The function of the cellular prion protein (PrPC), while still poorly understood, is increasingly linked to its ability to bind physiological metal ions at the cell surface. PrPC binds divalent forms of both copper and zinc through its unstructured N-terminal domain, modulating interactions between PrPC and various receptors at the cell surface and ultimately tuning downstream cellular processes. In this chapter, we briefly discuss the molecular features of copper and zinc uptake by PrPC and summarize evidence implicating these metal ions in PrP-mediated physiology. We then focus our review on recent biophysical evidence revealing a physical interaction between the flexible N-terminal and globular C-terminal domains of PrPC. This interdomain cis interaction is electrostatic in nature and is promoted by the binding of Cu2+ and Zn2+ to the N-terminal octarepeat domain. These findings, along with recent cellular studies, suggest a mechanism whereby NC interactions serve to regulate the activity and/or toxicity of the PrPC N-terminus. We discuss this potential mechanism in relation to familial prion disease mutations, lethal deletions of the PrPC central region, and neurotoxicity induced by certain globular domain ligands, including bona fide prions and toxic amyloid-ß oligomers.


Subject(s)
Copper/pharmacology , Neurotoxins/antagonists & inhibitors , Neurotoxins/chemistry , Prion Proteins/antagonists & inhibitors , Prion Proteins/chemistry , Zinc/pharmacology , Animals , Humans , Models, Molecular , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...