Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 72(1): 802-10, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16391121

ABSTRACT

Genetically altered or tagged Vibrio fischeri strains can be observed in association with their mutualistic host Euprymna scolopes, providing powerful experimental approaches for studying this symbiosis. Two limitations to such in situ analyses are the lack of suitably stable plasmids and the need for a fluorescent tag that can be used in tandem with green fluorescent protein (GFP). Vectors previously used in V. fischeri contain the p15A replication origin; however, we found that this replicon is not stable during growth in the host and is retained by fewer than 20% of symbionts within a day after infection. In contrast, derivatives of V. fischeri plasmid pES213 were retained by approximately 99% of symbionts even 3 days after infection. We therefore constructed pES213-derived shuttle vectors with a variety of selectable and visual markers. To include a visual tag that can be used in conjunction with GFP, we compared seven variants of the DsRed2 red fluorescent protein (RFP): mRFP1, tdimer2(12), DsRed.T3, DsRed.T4, DsRed.M1, DsRed.T3_S4T, and DsRed.T3(DNT). The last variant was brightest, displaying >20-fold more fluorescence than DsRed2 in V. fischeri. RFP expression did not detectably affect the fitness of V. fischeri, and cells were readily visualized in combination with GFP-expressing cells in mixed infections. Interestingly, even when inocula were dense enough that most E. scolopes hatchlings were infected by two strains, there was little mixing of the strains in the light organ crypts. We also used constitutive RFP in combination with the luxICDABEG promoter driving expression of GFP to visualize the spatial and temporal induction of this bioluminescence operon during symbiotic infection. Our results demonstrate the utility of pES213-based vectors and RFP for in situ experimental approaches in studies of the V. fischeri-E. scolopes symbiosis.


Subject(s)
Aliivibrio fischeri/growth & development , Decapodiformes/microbiology , Genetic Vectors , Luminescent Proteins/metabolism , Plasmids , Symbiosis , Acyltransferases/genetics , Acyltransferases/metabolism , Aliivibrio fischeri/genetics , Aliivibrio fischeri/metabolism , Animal Structures/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Light , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plasmids/genetics , Red Fluorescent Protein
2.
J Bacteriol ; 186(13): 4315-25, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15205434

ABSTRACT

The motile bacterium Vibrio fischeri is the specific bacterial symbiont of the Hawaiian squid Euprymna scolopes. Because motility is essential for initiating colonization, we have begun to identify stage-specific motility requirements by creating flagellar mutants that have symbiotic defects. V. fischeri has six flagellin genes that are uniquely arranged in two chromosomal loci, flaABCDE and flaF. With the exception of the flaA product, the predicted gene products are more similar to each other than to flagellins of other Vibrio species. Immunoblot analysis indicated that only five of the six predicted proteins were present in purified flagella, suggesting that one protein, FlaF, is unique with respect to either its regulation or its function. We created mutations in two genes, flaA and flaC. Compared to a flaC mutant, which has wild-type flagellation, a strain having a mutation in the flaA gene has fewer flagella per cell and exhibits a 60% decrease in its rate of migration in soft agar. During induction of light organ symbiosis, colonization by the flaA mutant is impaired, and this mutant is severely outcompeted when it is presented to the animal as a mixed inoculum with the wild-type strain. Furthermore, flaA mutant cells are preferentially expelled from the animal, suggesting either that FlaA plays a role in adhesion or that normal motility is an advantage for retention within the host. Taken together, these results show that the flagellum of V. fischeri is a complex structure consisting of multiple flagellin subunits, including FlaA, which is essential both for normal flagellation and for motility, as well as for effective symbiotic colonization.


Subject(s)
Decapodiformes/microbiology , Flagellin/genetics , Symbiosis , Vibrio/physiology , Animals , Chromosome Mapping , Light , Movement
3.
Appl Environ Microbiol ; 70(4): 2520-4, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15066853

ABSTRACT

In this study, we demonstrated that the putative Vibrio fischeri rpoN gene, which encodes sigma(54), controls flagellar biogenesis, biofilm development, and bioluminescence. We also show that rpoN plays a requisite role initiating the symbiotic association of V. fischeri with juveniles of the squid Euprymna scolopes.


Subject(s)
DNA-Binding Proteins , DNA-Directed RNA Polymerases/physiology , Sigma Factor/physiology , Vibrio/physiology , Biofilms/growth & development , DNA-Directed RNA Polymerases/genetics , Genes, Bacterial , Iron/metabolism , Luminescence , Molecular Sequence Data , Movement , Mutation , Nitrogen/metabolism , Plasmids/genetics , RNA Polymerase Sigma 54 , Sigma Factor/genetics , Vibrio/genetics
4.
Appl Environ Microbiol ; 69(10): 5928-34, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14532046

ABSTRACT

The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.


Subject(s)
Decapodiformes/microbiology , Vibrio/growth & development , Vibrio/pathogenicity , Animal Structures/microbiology , Animals , Base Sequence , Colony Count, Microbial , DNA Transposable Elements , Light , Molecular Sequence Data , Mutagenesis, Insertional , Symbiosis , Vibrio/genetics
5.
J Bacteriol ; 185(12): 3547-57, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12775692

ABSTRACT

Flagellum-mediated motility of Vibrio fischeri is an essential factor in the bacterium's ability to colonize its host, the Hawaiian squid Euprymna scolopes. To begin characterizing the nature of the flagellar regulon, we have cloned a gene, designated flrA, from V. fischeri that encodes a putative sigma(54)-dependent transcriptional activator. Genetic arrangement of the flrA locus in V. fischeri is similar to motility master-regulator operons of Vibrio cholerae and Vibrio parahaemolyticus. In addition, examination of regulatory regions of a number of flagellar operons in V. fischeri revealed apparent sigma(54) recognition motifs, suggesting that the flagellar regulatory hierarchy is controlled by a similar mechanism to that described in V. cholerae. However, in contrast to its closest known relatives, flrA mutant strains of V. fischeri ES114 were completely abolished in swimming capability. Although flrA provided in trans restored motility to the flrA mutant, the complemented strain was unable to reach wild-type levels of symbiotic colonization in juvenile squid, suggesting a possible role for the proper expression of FlrA in regulating symbiotic colonization factors in addition to those required for motility. Comparative RNA arbitrarily primed PCR analysis of the flrA mutant and its wild-type parent revealed several differentially expressed transcripts. These results define a regulon that includes both flagellar structural genes and other genes apparently not involved in flagellum elaboration or function. Thus, the transcriptional activator FlrA plays an essential role in regulating motility, and apparently in modulating other symbiotic functions, in V. fischeri.


Subject(s)
DNA-Binding Proteins , DNA-Directed RNA Polymerases , Flagella/genetics , Genes, Bacterial , Sigma Factor , Trans-Activators/genetics , Vibrio/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA-Directed RNA Polymerases/metabolism , Decapodiformes , Genetic Complementation Test , Light , Molecular Sequence Data , Movement , Mutation , Promoter Regions, Genetic , RNA Polymerase Sigma 54 , Regulon , Sequence Alignment , Sigma Factor/metabolism , Symbiosis
6.
Appl Environ Microbiol ; 68(5): 2519-28, 2002 May.
Article in English | MEDLINE | ID: mdl-11976129

ABSTRACT

Motility is required for Vibrio fischeri cells to interact with and specifically colonize the light-emitting organ of their host, the squid Euprymna scolopes. To investigate the influence of motility on the expression of the symbiotic phenotype, we isolated mutants of the squid symbiont V. fischeri ES114 that had altered migration abilities. Spontaneous hyperswimmer (HS) mutants, which migrated more rapidly in soft agar and were hyperflagellated relative to the wild type, were isolated and grouped into three phenotypic classes. All of the HS strains tested, regardless of class, were delayed in symbiosis initiation. This result suggested that the hypermotile phenotype alone contributes to an inability to colonize squid normally. Class III HS strains showed the greatest colonization defect: they colonized squid to a level that was only 0.1 to 10% that achieved by ES114. In addition, class III strains were defective in two capabilities, hemagglutination and luminescence, that have been previously described as colonization factors in V. fischeri. Class II and III mutants also share a mucoid colony morphology; however, class II mutants can colonize E. scolopes to a level that was 40% of that achieved by ES114. Thus, the mucoid phenotype alone does not contribute to the greater defect exhibited by class III strains. When squid were exposed to ES114 and any one of the HS mutant strains as a coinoculation, the parent strain dominated the resulting symbiotic light-organ population. To further investigate the colonization defects of the HS strains, we used confocal laser-scanning microscopy to visualize V. fischeri cells in their initial interaction with E. scolopes tissue. Compared to ES114, HS strains from all three classes were delayed in two behaviors involved in colonization: (i) aggregation on host-derived mucus structures and (ii) migration to the crypts. These results suggest that, while motility is required to initiate colonization, the presence of multiple flagella may actually interfere with normal aggregation and attachment behavior. Furthermore, the pleiotropic nature of class III HS strains provides evidence that motility is coregulated with other symbiotic determinants in V. fischeri.


Subject(s)
Movement/physiology , Symbiosis/physiology , Vibrio/physiology , Colony Count, Microbial , Flagella/physiology , Luminescence , Mutation , Phenotype , Vibrio/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...