Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 87: 103359, 2020 May.
Article in English | MEDLINE | ID: mdl-31948614

ABSTRACT

Washing in chlorinated water is widely practiced for commercial fresh produce processing. While known as an effective tool for mitigating food safety risks, chlorine washing could also represent an opportunity for spreading microbial contaminations under sub-optimal operating conditions. This study evaluated Salmonella inactivation and cross-contamination in a simulated washing process of cherry and grape tomatoes. Commercially harvested tomatoes and the associated inedible plant matter (debris) were differentially inoculated with kanamycin resistant (KanR) or rifampin resistant (RifR) Salmonella strains, and washed together with uninoculated tomatoes in simulated packinghouse dump tank (flume) wash water. Washing in chlorinated water resulted in significantly higher Salmonella reduction on tomatoes than on debris, achieving 2-3 log reduction on tomatoes and about 1 log reduction on debris. Cross-contamination by Salmonella on tomatoes was significantly reduced in the presence of 25-150 mg/L free chlorine, although sporadic cross-contamination on tomatoes was detected when tomatoes and debris were inoculated at high population density. The majority of the sporadic cross-contaminations originated from Salmonella inoculated on debris. These findings suggested that debris could be a potentially significant source of contamination during commercial tomato washing.


Subject(s)
Food Contamination/analysis , Prunus avium/microbiology , Salmonella/growth & development , Solanum lycopersicum/microbiology , Chlorine/pharmacology , Food Handling , Food Microbiology , Food Safety , Salmonella/drug effects
2.
Water Environ Res ; 85(9): 806-14, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24175410

ABSTRACT

Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-cost solutions to meet these goals and guidelines. The objective of this study was to determine the multiple-event removal efficiency and capacity of compost filter socks (FS) and filter socks with natural sorbents (NS) to remove soluble phosphorus, ammonium-nitrogen, nitrate-nitrogen, E. coli, Enterococcus, and oil from urban storm water runoff. Treatments were exposed to simulated storm water pollutant concentrations consistent with urban runoff originating from impervious surfaces, such as parking lots and roadways. Treatments were exposed to a maximum of 25 runoff events, or when removal efficiencies were < or = 25%, whichever occurred first. Experiments were conducted in triplicate. The filter socks with natural sorbents removed significantly greater soluble phosphorus than the filter socks alone, removing a total of 237 mg/linear m over eight runoff events, or an average of 34%. The filter socks with natural sorbents removed 54% of ammonium-nitrogen over 25 runoff events, or 533 mg/linear m, and only 11% of nitrate-nitrogen, or 228 mg/linear m. The filter socks and filter socks with natural sorbents both removed 99% of oil over 25 runoff events, or a total load of 38,486 mg/linear m. Over 25 runoff events the filter socks with natural sorbents removed E. coli and Enteroccocus at 85% and 65%, or a total load of 3.14 CFUs x 10(8)/ linear m and 1.5 CFUs x 10(9)/linear m, respectively; both were significantly greater than treatment by filter socks alone. Based on these experiments, this technique can be used to reduce soluble pollutants from storm water over multiple runoff events.


Subject(s)
Wastewater/analysis , Water Microbiology , Water Pollutants, Chemical/analysis , Water Pollution/prevention & control , Water Purification , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Filtration , Hydrocarbons/isolation & purification , Nitrogen Compounds/isolation & purification , Phosphorus/isolation & purification , Rain , Soil
3.
J Food Prot ; 76(6): 1062-84, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23726206

ABSTRACT

Application of manure or soil amendments of animal origin (untreated soil amendments; UTSAs) to agricultural land has been a long-standing practice to maintain or improve soil quality through addition of organic matter, nitrogen, and phosphorus. Much smaller quantities of these types of UTSAs are applied to land used for food crops than to land used for animal grain and forage. UTSAs can harbor zoonotic enteric pathogens that may survive for extended periods after application. Additional studies are needed to enhance our understanding of preharvest microbial food safety hazards and control measures pertaining to the application of UTSAs especially for land used to grow produce that may be consumed raw. This document is intended to provide an approach to study design and a framework for defining the scope and type of data required. This document also provides a tool for evaluating the strength of existing data and thus can aid the produce industry and regulatory authorities in identifying additional research needs. Ultimately, this framework provides a means by which researchers can increase consistency among and between studies and facilitates direct comparison of hazards and efficacy of controls applied to different regions, conditions, and practices.


Subject(s)
Agriculture/standards , Food Contamination/analysis , Hazard Analysis and Critical Control Points , Manure/microbiology , Research Design , Animals , Consumer Product Safety , Environment , Food Microbiology , Manure/parasitology , Nitrogen/analysis , Phosphorus/analysis , Soil , Soil Microbiology/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...