Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1438, 2019.
Article in English | MEDLINE | ID: mdl-31921222

ABSTRACT

A survey was conducted in the Maritimes region of eastern Canada to measure the phytochemical diversity of prenylchalcone, soft resins (alpha & beta acids), and flavonol constituents from 30 unique wild-growing populations of hops (Humulus lupulus L.). Based on cone chemometrics, the majority of accessions (63.3%) are native Humulus lupulus ssp. lupoloides, with cones containing both xanthogalenol and 4'-O-methyl xanthohumol as chemotaxonomic indicator molecules. Interestingly, the leaves of all verified Humulus lupulus ssp. lupulus accessions accumulated high proportions (>0.20 total flavonols) of two acylated flavonol derivatives (kaempferol-3-O-(6''-O-malonyl)-ß-D-glucopyranoside; quercetin-3-O-(6''-O-malonyl)-ß-D-glucopyranoside), both previously unreported from hops leaves. The native lupuloides accessions examined possess only trace amounts of this compound in their leaves (<0.10 total flavonols), suggesting its potential utility as a novel, leaf-derived chemotaxonomic marker for subspecies identification purposes. A leaf-derived taxonomic marker is useful for identifying wild-growing accessions, as leaves are present throughout the entire growing season, whereas cones are only produced late in summer. Additionally, the collection of cones from 10-meter tall wild plants in overgrown riparian habitats is often difficult. The total levels of alpha acids, beta acids, and prenylchalcones in wild-collected Maritimes lupuloides cones are markedly higher than those previously reported for lupuloides individuals in the westernmost extent of its native range and show potentially valuable traits for future cultivar development, while some may be worthy of immediate commercial release. The accessions will be maintained as a core germplasm resource for future cultivar development.

2.
PLoS One ; 6(10): e26834, 2011.
Article in English | MEDLINE | ID: mdl-22046375

ABSTRACT

Carrageenans are a collective family of linear, sulphated galactans found in a number of commercially important species of marine red alga. These polysaccharides are known to elicit defense responses in plant and animals and possess anti-viral properties. We investigated the effect of foliar application of ι-, κ- and λ-carrageenans (representing various levels of sulphation) on Arabidopsis thaliana in resistance to the generalist insect Trichoplusia ni (cabbage looper) which is known to cause serious economic losses in crop plants. Plants treated with ι- and κ-carrageenan showed reduced leaf damage, whereas those treated with λ- carrageenan were similar to that of the control. In a no-choice test, larval weight was reduced by more than 20% in ι- and κ- carrageenan treatments, but unaffected by λ-carrageenan. In multiple choice tests, carrageenan treated plants attracted fewer T. ni larvae by the fourth day following infestation as compared to the control. The application of carrageenans did not affect oviposition behaviour of T. ni. Growth of T. ni feeding on an artificial diet amended with carrageenans was not different from that fed with untreated control diet. ι-carrageenan induced the expression of defense genes; PR1, PDF1.2, and TI1, but κ- and λ-carrageenans did not. Besides PR1, PDF1.2, and TI1, the indole glucosinolate biosynthesis genes CYP79B2, CYP83B1 and glucosinolate hydrolysing QTL, ESM1 were up-regulated by ι-carrageenan treatment at 48 h post infestation. Gas chromatography-mass spectrometry analysis of carrageenan treated leaves showed increased concentrations of both isothiocyanates and nitriles. Taken together, these results show that carrageenans have differential effects on Arabidopsis resistance to T. ni and that the degree of sulphation of the polysaccharide chain may well mediate this effect.


Subject(s)
Arabidopsis/immunology , Carrageenan/pharmacology , Moths/immunology , Plants/immunology , Animals , Gene Expression Regulation, Plant/drug effects , Immunity/drug effects , Immunity/genetics , Rhodophyta , Seaweed
SELECTION OF CITATIONS
SEARCH DETAIL
...