Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nano Lett ; 23(16): 7303-7310, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37566825

ABSTRACT

Evolution has shaped the development of proteins with an incredible diversity of properties. Incorporating proteins into materials is desirable for applications including biosensing; however, high-throughput selection techniques for screening protein libraries in materials contexts is lacking. In this work, a high-throughput platform to assess the binding affinity for ordered sensing proteins was established. A library of fusion proteins, consisting of an elastin-like polypeptide block, one of 22 variants of rcSso7d, and a coiled-coil order-directing sequence, was generated. All selected variants had high binding in films, likely due to the similarity of the assay to magnetic bead sorting used for initial selection, while solution binding was more variable. From these results, both the assembly of the fusion proteins in their operating state and the functionality of the binding protein are key factors in the biosensing performance. Thus, the integration of directed evolution with assembled systems is necessary to the design of better materials.


Subject(s)
Carrier Proteins , High-Throughput Screening Assays , Streptavidin , High-Throughput Screening Assays/methods , Peptides/chemistry , Gene Library
2.
ACS Nano ; 17(16): 15751-15762, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552700

ABSTRACT

An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.


Subject(s)
Bacterial Proteins , Molecular Dynamics Simulation , Bacterial Proteins/metabolism , Propylene Glycol/chemistry , Propylene Glycol/metabolism , Organelles/metabolism
3.
Biomacromolecules ; 24(7): 3159-3170, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37347675

ABSTRACT

The self-assembled layer-by-layer technique has attracted a great deal of attention as a method for engineering bio-functional surfaces under mild chemical conditions. The production of multilayer films, starting from newly designed building blocks, may be laborious, considering the inherent limitations for anticipating how minimal changes in the macromolecular composition may impact both film deposition and performance. This paper presents an automated, high-throughput approach to depositing polyelectrolyte multilayers (PEMs) in multiwell plates, enabling the screening of nearly 100 film formulations in the same process. This high-throughput layer-by-layer (HT-LbL) method runs in an affordable, fully commercial platform using Python-coded routines that can be easily adapted for the materials science lab settings. The HT-LbL system was validated by investigating the deposition of polysaccharide-based films in multiwell plates, probing the absorbance signal of ionically stained polyelectrolyte multilayers (PEMs) prepared in one single batch. The HT-LbL method was also used to investigate the deposition of PEMs with a small library of genetically engineered elastin-like polypeptides (ELPs) with different levels of ionizable and hydrophobic amino acid residues. The deposition of ELP/chitosan films was assessed based on the signal of fluorescently labeled species (chitosan or ELP-mCherry), demonstrating that both electrostatic and hydrophobic residues are essential for film buildup. The growth and surface properties of ELP-mCherry/chitosan films also seemed susceptible to the assembly pH, forming a higher film growth and a rougher and more hydrophobic surface for both polyelectrolytes deposited under a low ionization degree. Overall, this study illustrates the challenge of predicting the growth and properties of multilayer films and how the HT-LbL can accelerate the development of multilayer films that demand high levels of testing and optimization.


Subject(s)
Chitosan , Chitosan/chemistry , Polyelectrolytes , Elastin , High-Throughput Screening Assays , Polysaccharides/chemistry
4.
Virology ; 579: 137-147, 2023 02.
Article in English | MEDLINE | ID: mdl-36669330

ABSTRACT

Virus-like particles (VLPs) are promising scaffolds for biomaterials as well as diagnostic and therapeutic applications. However, there are some key challenges to be solved, such as the ability to engineer alternate sizes for varied use cases. To this end, we created a library of MS2 VLP variants at two key residues in the coat protein which have been implicated as important to controlling VLP size and geometry. By adapting a method for systematic mutagenesis coupled with size-based selections and high-throughput sequencing as a readout, we developed a quantitative assessment of two residues in MS2 coat protein that govern the size shift in MS2 VLPs. We then applied the strategy to the equivalent residues in Qß VLPs, an MS2 homolog, and demonstrate that the analogous pair of residues are also able to impact Qß VLP size and shape. These results underscore the power of fitness landscapes in identifying critical features for assembly.


Subject(s)
Vaccines, Virus-Like Particle , Particle Size , Gene Library , Vaccines, Virus-Like Particle/genetics
5.
Nat Commun ; 13(1): 3746, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768404

ABSTRACT

Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.


Subject(s)
Bacterial Proteins , Salmonella typhimurium , Bacterial Proteins/metabolism , Metabolic Engineering , Propylene Glycol/metabolism , Salmonella typhimurium/metabolism
6.
J Bacteriol ; 204(9): e0057621, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35575582

ABSTRACT

Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here, we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is critical for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy, we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and system-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis. IMPORTANCE MCPs are unique, genetically encoded organelles used by many bacteria to survive in resource-limited environments. There is significant interest in understanding the biogenesis and function of these organelles, both as potential antibiotic targets in enteric pathogens and also as useful tools for overcoming metabolic engineering bottlenecks. However, the mechanism by which these organelles are formed natively is still not completely understood. Here, we provide evidence of a potential mechanism in S. enterica by which a single protein, PduB, links the MCP shell and metabolic core. This finding is critical for those seeking to disrupt MCPs during pathogenic infections or for those seeking to harness MCPs as nanobioreactors in industrial settings.


Subject(s)
Salmonella enterica , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Gene Expression Regulation, Bacterial , Lysine/metabolism , Organelles/metabolism , Propylene Glycol/metabolism , Propylene Glycols , Salmonella enterica/genetics , Salmonella enterica/metabolism , Salmonella typhimurium/metabolism
7.
Proc Natl Acad Sci U S A ; 119(13): e2119509119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35312375

ABSTRACT

SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.


Subject(s)
Hydrolases , Polymers , Multienzyme Complexes , Plastics , Polyethylene Terephthalates/chemistry , Recycling
8.
Bioinformatics ; 38(3): 612-620, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34734968

ABSTRACT

MOTIVATION: Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or insertions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can provide a population-level understanding of their gene content variation and functional homology. RESULTS: We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel, frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant homologous gene clusters and variable gene clusters found in integrative and conjugative elements. AVAILABILITY AND IMPLEMENTATION: GeneGrouper software and code are publicly available at https://pypi.org/project/GeneGrouper/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome, Microbial , Software , Metagenome , Metagenomics/methods , Multigene Family
9.
ACS Cent Sci ; 7(7): 1135-1143, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34345666

ABSTRACT

High-throughput screening of mechanical properties can transform materials science research by both aiding in materials discovery and developing predictive models. However, only a few such assays have been reported, requiring custom or expensive equipment, while the mounting demand for enormous data sets of materials properties for predictive models is unfulfilled by the current characterization throughput. We address this problem by developing a high-throughput colorimetric adhesion screening method using a common laboratory centrifuge, multiwell plates, and microparticles. The technique uses centrifugation to apply a homogeneous mechanical detachment force across individual formulations in a multiwell plate. We also develop a high-throughput sample deposition method to prepare films with uniform thickness in each well, minimizing well-to-well variability. After establishing excellent agreement with the well-known probe tack adhesion test, we demonstrate the consistency of our method by performing the test on a multiwell plate with two different formulations in an easily discernible pattern. The throughput is limited only by the number of wells in the plates, easily reaching 103 samples/run. With its simplicity, low cost, and large dynamic range, this high-throughput method has the potential to change the landscape of adhesive material characterization.

10.
Curr Opin Microbiol ; 63: 36-42, 2021 10.
Article in English | MEDLINE | ID: mdl-34126434

ABSTRACT

Organization of metabolic processes within the space of a cell is critical for the survival of many organisms. In bacteria, spatial organization is achieved via proteinaceous organelles called bacterial microcompartments, which encapsulate pathway enzymes, substrates, and co-factors to drive the safe and efficient metabolism of niche carbon sources. Microcompartments are self-assembled from shell proteins that encapsulate a core comprising various enzymes. This review discusses how recent advances in understanding microcompartment structure and assembly have informed engineering efforts to repurpose compartments and compartment-based structures for non-native functions. These advances, both in understanding of the native structure and function of compartments, as well as in the engineering of new functions, will pave the way for the use of these structures in bacterial cell factories.


Subject(s)
Bacteria , Bacterial Proteins , Bacteria/genetics , Bacterial Proteins/genetics , Organelles
11.
ACS Cent Sci ; 7(4): 658-670, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34056096

ABSTRACT

Bacterial microcompartments compartmentalize the enzymes that aid chemical and energy production in many bacterial species. They are postulated to help bacteria survive in hostile environments. Metabolic engineers are interested in repurposing these organelles for non-native functions. Here, we use computational, theoretical, and experimental approaches to determine mechanisms that effectively control microcompartment self-assembly. We find, via multiscale modeling and mutagenesis studies, the interactions responsible for the binding of hexamer-forming proteins in a model system, the propanediol utilization bacterial microcompartments from Salmonella enterica serovar Typhimurium LT2. We determine how the changes in the microcompartment hexamer protein preferred angles and interaction strengths can modify the assembled morphologies. We demonstrate that such altered strengths and angles are achieved via amino acid mutations. A thermodynamic model provides guidelines to design microcompartments of various morphologies. These findings yield insight in controlled protein assembly and provide principles for assembling microcompartments for biochemical or energy applications as nanoreactors.

12.
PLoS One ; 15(3): e0226395, 2020.
Article in English | MEDLINE | ID: mdl-32150579

ABSTRACT

Bacterial microcompartments (MCPs) are protein-based organelles that encapsulate metabolic pathways. Metabolic engineers have recently sought to repurpose MCPs to encapsulate heterologous pathways to increase flux through pathways of interest. As MCP engineering becomes more common, standardized methods for analyzing changes to MCPs and interpreting results across studies will become increasingly important. In this study, we demonstrate that different imaging techniques yield variations in the apparent size of purified MCPs from Salmonella enterica serovar Typhimurium LT2, likely due to variations in sample preparation methods. We provide guidelines for preparing samples for MCP imaging and outline expected variations in apparent size and morphology between methods. With this report we aim to establish an aid for comparing results across studies.


Subject(s)
Gene Expression Regulation, Bacterial/physiology , Metabolic Networks and Pathways/physiology , Salmonella typhimurium/metabolism , Salmonella typhimurium/genetics
13.
Biomacromolecules ; 20(6): 2167-2173, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31117367

ABSTRACT

Elastin-like polypeptides (ELPs) are one of the most widely-studied classes of protein material because of their lower critical solution temperature (LCST)-like thermoresponsive behavior in aqueous solutions. Here, it is shown that ELPs also exhibit cononsolvency effects, similar to many other water-soluble polymers. The effect of solvent composition on the dilute solution phase behavior of an elastin-like polypeptide is studied here in water/alcohol blends that contain 0-40 vol % methanol, ethanol, isopropanol, or 1-propanol. In all systems studied, the ELP exhibits cononsolvency behavior at low alcohol content, as indicated by a decrease in the transition temperature of the ELP. When the alcohol added is ethanol, isopropanol, or 1-propanol, the decrease in transition temperature is followed by a region of complete ELP insolubility, and, finally, the emergence of upper-critical solution transition (UCST)-like behavior. The ELP is completely soluble at all temperatures measured at alcohol contents above 40 vol %. The effect of sodium chloride on this ELP cononsolvency in water/ethanol blends was also studied. Unlike the previously studied polymer poly( N-isoropylacrylamide) (PNIPAM), ELP exhibits nonmonotonic changes in transition temperature with the addition of sodium chloride at ethanol contents that produce UCST-like transitions of the ELP. This discovery of ELP cononsolvency in water/alcohol systems introduces a new handle with which the solubility of ELPs can be tuned.


Subject(s)
Alcohols/chemistry , Elastin/chemistry , Solvents/chemistry , Water/chemistry , 1-Propanol/chemistry , 2-Propanol/chemistry , Ethanol/chemistry , Methanol/chemistry , Peptides/chemistry , Solubility , Transition Temperature
14.
PeerJ ; 6: e5282, 2018.
Article in English | MEDLINE | ID: mdl-30083444

ABSTRACT

The periodical cicadas of North America (Magicicada spp.) are well-known for their long life cycles of 13 and 17 years and their mass synchronized emergences. Although periodical cicada life cycles are relatively strict, the biogeographic patterns of periodical cicada broods, or year-classes, indicate that they must undergo some degree of life cycle switching. We present a new map of periodical cicada Brood V, which emerged in 2016, and demonstrate that it consists of at least four distinct parts that span an area in the United States stretching from Ohio to Long Island. We discuss mtDNA haplotype variation in this brood in relation to other periodical cicada broods, noting that different parts of this brood appear to have different origins. We use this information to refine a hypothesis for the formation of periodical cicada broods by 1- and 4-year life cycle jumps.

15.
Biomacromolecules ; 19(7): 2517-2525, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29791150

ABSTRACT

Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.


Subject(s)
Elastin/chemistry , Luminescent Proteins/chemistry , Protein Multimerization , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Polymerization , Recombinant Proteins/chemistry , Static Electricity , Red Fluorescent Protein
16.
Langmuir ; 32(50): 13367-13376, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993031

ABSTRACT

Organophosphate (OP) nerve agents are a class of chemical warfare agents (CWAs) that exist as bulk stocks in current and past war zones. Thus, a technology that can perform on-site decontamination in a safe and timely fashion is desirable. Here, complex coacervate core micelles (C3Ms) were used to encapsulate organophosphate hydrolase (OPH) and chemostabilize it to maintain activity after exposure to organophosphate simulants ethanol and dimethyl methylphosphonate (DMMP). C3Ms were formed by two polymers-poly(acrylic acid) (PAA) and poly(oligo(ethylene glycol) methacrylate)-b-poly(4-vinyl N-methylpyridyl iodide), (POEGMA-b-qP4VP). Complexes of the coacervate micelles with the enzyme OPH were investigated by small angle neutron scattering (SANS), dynamic light scattering (DLS), and transmission electron microscopy (TEM), demonstrating the formation of micellar structures in solution. The activity of OPH against methyl paraoxon in these C3Ms under aqueous conditions was assayed after heat treatment for 3 days at 37 °C. The OPH in C3Ms retained 88 ± 7% of its initial activity, as compared to the 48 ± 3% activity retained by OPH alone, indicating that the C3Ms were able to stabilize the enzyme to heat treatment. C3Ms transferred into the two organic solvents formed larger structures than inverse micelles formed by the block copolymer alone. The addition of OPH to the C3Ms in organic solvents did not significantly change their structure. The activity of OPH (again, against methyl paraoxon) after 24 h of incubation at 4 °C was measured and compared to that of OPH in C3Ms. While OPH alone retained less than 5% of its activity after this incubation in both solvents, OPH in C3Ms retained 35 ± 3% of its activity in DMMP and 26 ± 1% of its activity in ethanol.


Subject(s)
Micelles , Phosphoric Monoester Hydrolases/chemistry , Solvents , Polymers
17.
Soft Matter ; 12(15): 3570-81, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26965053

ABSTRACT

Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.


Subject(s)
Polyelectrolytes/chemistry , Proteins/chemistry , Animals , Cattle , Micelles , Models, Molecular , Protein Conformation
18.
Biomacromolecules ; 17(3): 928-34, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26927835

ABSTRACT

Fusion proteins provide a facile route for the purification and self-assembly of biofunctional protein block copolymers into complex nanostructures; however, the use of biochemical synthesis techniques introduces unexplored variables into the design of the structures. Using model fusion constructs of the red fluorescent protein mCherry and the coil-like protein elastin-like polypeptide (ELP), it is shown that the molar mass and hydrophobicity of the ELP sequence have a large effect on the propensity of a fusion to form well-ordered nanostructures, even when the ELP is in the low temperature, highly solvated state. In contrast, the presence of a 6xHis purification tag has little effect on self-assembly, and the order of blocks in the construct (N-terminal vs C-terminal) only has a significant effect on the nanostructure when the conjugates are heated above the transition temperature of the ELP block. These results indicate that for a sufficiently hydrophobic and high molar mass ELP block, there is a great deal of design latitude in the construction of fusion protein block copolymers for self-assembling nanomaterials.


Subject(s)
Nanostructures/chemistry , Peptides/chemistry , Protein Multimerization , Hydrophobic and Hydrophilic Interactions , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Peptides/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Red Fluorescent Protein
19.
J Phys Chem B ; 117(15): 3935-43, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23521630

ABSTRACT

Self-assembling peptides represent a growing class of inexpensive, environmentally benign, nanostructured materials. In particular, diphenylalanine (FF) self-assembles into nanotubes with remarkable strength and thermal stability that have found use in a wide variety of applications, including as sacrificial templates and scaffolds for structuring inorganic materials and as interfacial "nanoforests" for superhydrophobic surfaces and high-performance supercapacitors and biosensors. However, little is known about the assembly mechanisms of FF nanotubes or the forces underlying their stability. Here, we perform a variety of molecular dynamics simulations on both zwitterionic and capped (uncharged) versions of the FF peptide to understand the early stages of self-assembly. We compare these results to simulations of the proposed nanotube X-ray crystal structure. When comparing the zwitterionic and uncharged FF peptides, we find that, while electrostatic interactions steer the former into more ordered dimers and trimers, the hydrophobic side chain interactions play a strong role in determining the structures of larger oligomers. Simulations of the crystal structure fragment also suggest that the strongest interactions occur between side chains, not between the charged termini that form salt bridges. We conclude that the amphiphilic nature of FF is key to understanding its self-assembly, and that the early precursors to nanotube structures are likely to involve substantial hydrophobic clustering, rather than hexamer ring motifs as has been previously suggested.


Subject(s)
Molecular Dynamics Simulation , Nanotubes/chemistry , Peptides/chemistry , Phenylalanine/analogs & derivatives , Dipeptides , Phenylalanine/chemistry
20.
Augment Altern Commun ; 28(4): 219-31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23256854

ABSTRACT

Even though we know that external memory aids support communication in Alzheimer's disease, the components of the communication aids for individuals with Alzheimer's disease have not been studied systematically. The goal of these two pilot experiments was to examine differences in conversational performance of adults with Alzheimer's disease related to the presence and absence of an aid, the type of symbol embedded in the aid, and the presence or absence of voice output. In Experiment 1, 30 adults with moderate-to-severe Alzheimer's disease participated in 10-min conversations with and without personalized AAC boards. There was no effect of AAC, regardless of symbol type, and a deleterious effect of voice output. In Experiment 2, modified spaced-retrieval training preceded conversations, standardized prompts were presented, and semantically-based dependent variables were examined. For the 11 participants in the second experiment, there was a significant effect of AAC, showing that the presence of AAC was associated with greater use of targeted words during personal conversations. We discuss new information about the contribution of AAC for persons with Alzheimer's disease, and demonstrate how the applied research process evolves over the course of a long-term commitment to a scientific investigation.


Subject(s)
Alzheimer Disease/complications , Communication Aids for Disabled , Communication Disorders/etiology , Aged , Aged, 80 and over , Analysis of Variance , Communication Disorders/rehabilitation , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...