Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 19(2): 279-87, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16485904

ABSTRACT

The oral contraceptive 17-alpha-ethynylestradiol (17EE) is a mechanism-based inactivator of cytochrome P450s (P450s) 2B1 and 2B6. Inactivation of P450s 2B1 and 2B6 in the reconstituted system by [3H]17EE resulted in labeling of the P450 apoprotein. Mass spectral analysis of 17EE-inactivated P450 2B1 showed an increase in the mass of the apoprotein by 313 Da, consistent with the mass of 17EE plus one oxygen atom. P450s 2B1 and 2B6 were inactivated with [3H]17EE and digested with CNBr. Separation of these peptides resulted in the identification of one major labeled peptide for each enzyme. N-Terminal sequencing of these peptides yielded the amino acid sequences PYTDAVIHEI (for P450 2B1) and PYTEAV (for P450 2B6) that corresponded to amino acids P347-M376 and P347-M365 in P450s 2B1 and 2B6, respectively. Electrospray ionization (ESI)-liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption ionization (MALDI)-MS analysis of the P450 2B1-derived peptide resulted in a mass of 3654 Da consistent with the mass of the P347-M376 peptide (3385 Da) plus a 268 Da 17EE adduct. Chemically reactive intermediates of 17EE that were generated during the metabolism of 17EE by P450s 2B1 and 2B6 were trapped with gluthathione (GSH). ESI-LC-MS/MS analysis of 17EE-GSH conjugates from the incubation mixtures indicated that P450s 2B1 and 2B6 generated different reactive 17EE intermediates that were responsible for the inactivation and protein modification or the formation of GSH conjugates by these two enzymes.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Ethinyl Estradiol/analogs & derivatives , Ethinyl Estradiol/pharmacology , Glutathione/chemistry , Peptides/drug effects , Animals , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP2B1/antagonists & inhibitors , Cytochrome P-450 CYP2B1/chemistry , Cytochrome P-450 CYP2B1/metabolism , Cytochrome P-450 CYP2B6 , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Ethinyl Estradiol/chemistry , Glutathione/metabolism , Humans , Molecular Structure , Peptides/metabolism , Rats , Rats, Long-Evans , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/methods , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 300(2): 549-58, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11805216

ABSTRACT

17-alpha-Ethynylestradiol (17EE) inactivated purified, reconstituted rat hepatic cytochrome P450 (P450) 2B1 and human P450 2B6 in a mechanism-based manner. Little or no inactivation was observed when P450s 2B2 or 2B4 were incubated with 17EE. The inactivation of P450s 2B1 and 2B6 was entirely dependent on both NADPH and 17EE and followed pseudo-first order kinetics. The maximal rate constants for the inactivation of P450s 2B1 and 2B6 at 30 degrees C were 0.2 and 0.03 min(-1), respectively. For P450s 2B1 and 2B6 the apparent K(I) was 11 and 0.8 microM, respectively. Incubation of P450 2B1 with 17EE and NADPH for 20 min resulted in a 75% loss in enzymatic activity and a concurrent 20 to 25% loss of the enzyme's ability to form a reduced CO complex. With P450 2B6, an 83% loss in enzymatic activity and a 5 to 10% loss in the CO reduced spectrum were observed. The extrapolated partition ratios for 17EE with P450 2B1 and 2B6 were 21 and 13, respectively. Simultaneous incubation of an alternate substrate together with 17EE protected both enzymes from inactivation. A 1.3:1 stoichiometry of labeling for binding of the radiolabeled 17EE to P450 2B1 and 2B6 was seen. These results indicate that 17EE inactivates P450s 2B1 and 2B6 in a mechanism-based manner, primarily by the binding of a reactive intermediate of 17EE to the apoprotein. Analysis of the 17EE metabolites showed that 2B enzymes that become inactivated differ primarily by their ability to generate two metabolites that were not produced by P450s 2B2 or 2B4.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 CYP2B1/antagonists & inhibitors , Cytochrome P-450 Enzyme Inhibitors , Ethinyl Estradiol/analogs & derivatives , Ethinyl Estradiol/pharmacology , Oxidoreductases, N-Demethylating/antagonists & inhibitors , Animals , Biotransformation , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP2B1/biosynthesis , Cytochrome P-450 CYP2B1/chemistry , Cytochrome P-450 CYP2B6 , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/chemistry , Enzyme Induction/drug effects , Ethinyl Estradiol/metabolism , Humans , In Vitro Techniques , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Liver/drug effects , Liver/enzymology , Male , NADPH-Ferrihemoprotein Reductase/isolation & purification , NADPH-Ferrihemoprotein Reductase/metabolism , Oxidoreductases, N-Demethylating/biosynthesis , Oxidoreductases, N-Demethylating/chemistry , Phenobarbital/pharmacology , Rats , Rats, Long-Evans , Spectrophotometry, Ultraviolet , Steroid Hydroxylases/antagonists & inhibitors , Steroid Hydroxylases/biosynthesis , Steroid Hydroxylases/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...