Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
SLAS Discov ; 27(6): 337-348, 2022 09.
Article in English | MEDLINE | ID: mdl-35872229

ABSTRACT

A central challenge of antimalarial therapy is the emergence of resistance to the components of artemisinin-based combination therapies (ACTs) and the urgent need for new drugs acting through novel mechanism of action. Over the last decade, compounds identified in phenotypic high throughput screens (HTS) have provided the starting point for six candidate drugs currently in the Medicines for Malaria Venture (MMV) clinical development portfolio. However, the published screening data which provided much of the new chemical matter for malaria drug discovery projects have been extensively mined. Here we present a new screening and selection cascade for generation of hit compounds active against the blood stage of Plasmodium falciparum. In addition, we validate our approach by testing a library of 141,786 compounds not reported earlier as being tested against malaria. The Hit Generation Library 1 (HGL1) was designed to maximise the chemical diversity and novelty of compounds with physicochemical properties associated with potential for further development. A robust HTS cascade containing orthogonal efficacy and cytotoxicity assays, including a newly developed and validated nanoluciferase-based assay was used to profile the compounds. 75 compounds (Screening Active hit rate of 0.05%) were identified meeting our stringent selection criteria of potency in drug sensitive (NF54) and drug resistant (Dd2) parasite strains (IC50 ≤ 2 µM), rapid speed of action and cell viability in HepG2 cells (IC50 ≥ 10 µM). Following further profiling, 33 compounds were identified that meet the MMV Confirmed Active profile and are high quality starting points for new antimalarial drug discovery projects.


Subject(s)
Antimalarials , Malaria , Antimalarials/pharmacology , Drug Discovery , Humans , Luciferases , Malaria/drug therapy , Plasmodium falciparum
2.
J Med Chem ; 64(6): 3299-3319, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33666424

ABSTRACT

Class B G-protein-coupled receptors (GPCRs) remain an underexploited target for drug development. The calcitonin receptor (CTR) family is particularly challenging, as its receptors are heteromers comprising two distinct components: the calcitonin receptor-like receptor (CLR) or calcitonin receptor (CTR) together with one of three accessory proteins known as receptor activity-modifying proteins (RAMPs). CLR/RAMP1 forms a CGRP receptor, CLR/RAMP2 forms an adrenomedullin-1 (AM1) receptor, and CLR/RAMP3 forms an adrenomedullin-2 (AM2) receptor. The CTR/RAMP complexes form three distinct amylin receptors. While the selective blockade of AM2 receptors would be therapeutically valuable, inhibition of AM1 receptors would cause clinically unacceptable increased blood pressure. We report here a systematic study of structure-activity relationships that has led to the development of first-in-class AM2 receptor antagonists. These compounds exhibit therapeutically valuable properties with 1000-fold selectivity over the AM1 receptor. These results highlight the therapeutic potential of AM2 antagonists.


Subject(s)
Receptors, Adrenomedullin/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Discovery , Female , Humans , Mice, Inbred BALB C , Molecular Docking Simulation , Receptors, Adrenomedullin/metabolism , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
3.
ACS Pharmacol Transl Sci ; 3(4): 706-719, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32832872

ABSTRACT

The hormone adrenomedullin has both physiological and pathological roles in biology. As a potent vasodilator, adrenomedullin is critically important in the regulation of blood pressure, but it also has several roles in disease, of which its actions in cancer are becoming recognized to have clinical importance. Reduced circulating adrenomedullin causes increased blood pressure but also reduces tumor progression, so drugs blocking all effects of adrenomedullin would be unacceptable clinically. However, there are two distinct receptors for adrenomedullin, each comprising the same G protein-coupled receptor (GPCR), the calcitonin receptor-like receptor (CLR), together with a different accessory protein known as a receptor activity-modifying protein (RAMP). The CLR with RAMP2 forms an adrenomedullin-1 receptor, and the CLR with RAMP3 forms an adrenomedullin-2 receptor. Recent research suggests that a selective blockade of adrenomedullin-2 receptors would be therapeutically valuable. Here we describe the design, synthesis, and characterization of potent small-molecule adrenomedullin-2 receptor antagonists with 1000-fold selectivity over the adrenomedullin-1 receptor, although retaining activity against the CGRP receptor. These molecules have clear effects on markers of pancreatic cancer progression in vitro, drug-like pharmacokinetic properties, and inhibit xenograft tumor growth and extend life in a mouse model of pancreatic cancer. Taken together, our data support the promise of a new class of anticancer therapeutics as well as improved understanding of the pharmacology of the adrenomedullin receptors and other GPCR/RAMP heteromers.

4.
PLoS One ; 13(6): e0197372, 2018.
Article in English | MEDLINE | ID: mdl-29856759

ABSTRACT

A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Carcinogenesis/genetics , Histone-Lysine N-Methyltransferase/genetics , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , CRISPR-Cas Systems , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Humans , Methylation/drug effects , Methyltransferases/antagonists & inhibitors , RNA Interference , Small Molecule Libraries/pharmacology
5.
ACS Med Chem Lett ; 7(2): 134-8, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26985287

ABSTRACT

SMYD3 has been implicated in a range of cancers; however, until now no potent selective small molecule inhibitors have been available for target validation studies. A novel oxindole series of SMYD3 inhibitors was identified through screening of the Epizyme proprietary histone methyltransferase-biased library. Potency optimization afforded two tool compounds, sulfonamide EPZ031686 and sulfamide EPZ030456, with cellular potency at a level sufficient to probe the in vitro biology of SMYD3 inhibition. EPZ031686 shows good bioavailability following oral dosing in mice making it a suitable tool for potential in vivo target validation studies.

6.
J Med Chem ; 58(24): 9615-24, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26571076

ABSTRACT

Visceral leishmaniasis is a severe parasitic disease that is one of the most neglected tropical diseases. Treatment options are limited, and there is an urgent need for new therapeutic agents. Following an HTS campaign and hit optimization, a novel series of amino-pyrazole ureas has been identified with potent in vitro antileishmanial activity. Furthermore, compound 26 shows high levels of in vivo efficacy (>90%) against Leishmania infantum, thus demonstrating proof of concept for this series.


Subject(s)
Antiparasitic Agents/chemistry , Leishmania donovani/drug effects , Leishmania infantum/drug effects , Pyrazoles/chemistry , Urea/analogs & derivatives , Urea/chemistry , Animals , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/pharmacology , Cricetinae , Female , Humans , Leishmaniasis, Visceral/drug therapy , Mesocricetus , Microsomes/metabolism , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/pharmacology
7.
Mob Genet Elements ; 3(6): e27755, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24475369

ABSTRACT

MicroRNAs (miRs) are small noncoding RNAs that typically act as regulators of gene expression by base pairing with the 3' UTR of messenger RNAs (mRNAs) and either repressing their translation or initiating degradation. As of this writing over 24,500 distinct miRs have been identified, but the functions of the vast majority of these remain undescribed. This paper represents a summary of our in depth analysis of the genomic origins of miR loci, detailing the formation of 1,213 of the 7,321 recently identified miRs and thereby bringing the total number of miR loci with defined molecular origin to 3,605. Interestingly, our analyses also identify evidence for a second, novel mechanism of miR locus generation through describing the formation of 273 miR loci from mutations to other forms of noncoding RNAs. Importantly, several independent investigations of the genomic origins of miR loci have now supported the hypothesis that miR hairpins are formed by the adjacent genomic insertion of two complementary transposable elements (TEs) into opposing strands. While our results agree that subsequent transcription over such TE interfaces leads to the formation of the majority of functional miR loci, we now also find evidence suggesting that a subset of miR loci were actually formed by an alternative mechanism-point mutations in other structurally complex, noncoding RNAs (e.g., tRNAs and snoRNAs).

8.
PLoS Negl Trop Dis ; 6(4): e1625, 2012.
Article in English | MEDLINE | ID: mdl-22545171

ABSTRACT

Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (Hs1 and Hs2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. Analysis of the screening results has shown that structure-activity relationships (SAR) for Leishmania NMT are divergent from all other NMTs tested, a finding not predicted by sequence similarity calculations, resulting in the identification of four novel series of Leishmania-selective NMT inhibitors. We found a strong overlap between the SARs for Plasmodium NMT and both human NMTs, suggesting that achieving an appropriate selectivity profile will be more challenging. However, we did discover two novel series with selectivity for Plasmodium NMT over the other NMT orthologues in this study, and an additional two structurally distinct series with selectivity over Leishmania NMT. We believe that release of results from this study into the public domain will accelerate the discovery of NMT inhibitors to treat malaria and leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as Medical Research Council and Wellcome Trust can stimulate research for neglected diseases.


Subject(s)
Acyltransferases/antagonists & inhibitors , Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Antiprotozoal Agents/chemistry , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Humans , Leishmania donovani/drug effects , Molecular Structure , Plasmodium falciparum/drug effects , Protozoan Infections/drug therapy , Public-Private Sector Partnerships , Structure-Activity Relationship , Tropical Climate , Trypanosoma brucei brucei/drug effects
9.
J Comput Aided Mol Des ; 25(7): 621-36, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21604056

ABSTRACT

Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM-mM hits and the uniqueness of hits at weak binding affinities for these targets.


Subject(s)
Drug Discovery , Peptide Fragments/chemistry , Proteins/chemistry , Binding Sites , Combinatorial Chemistry Techniques/methods , Crystallography, X-Ray , Drug Industry , High-Throughput Screening Assays , Humans , Ligands , Magnetic Resonance Spectroscopy , Peptide Library , Protein Conformation
10.
J Chem Inf Model ; 50(1): 155-69, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19919042

ABSTRACT

A new computational algorithm for protein binding sites characterization and comparison has been developed, which uses a common reference framework of the projected ligand-space four-point pharmacophore fingerprints, includes cavity shape, and can be used with diverse proteins as no structural alignment is required. Protein binding sites are first described using GRID molecular interaction fields (GRID-MIFs), and the FLAP (fingerprints for ligands and proteins) method is then used to encode and compare this information. The discriminating power of the algorithm and its applicability for large-scale protein analysis was validated by analyzing various scenarios: clustering of kinase protein families in a relevant manner, predicting ligand activity across related targets, and protein-protein virtual screening. In all cases the results showed the effectiveness of the GRID-FLAP method and its potential use in applications such as identifying selectivity targets and tools/hits for new targets via the identification of other proteins with pharmacophorically similar binding sites.


Subject(s)
Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Models, Molecular , Proteins/metabolism , User-Computer Interface , Binding Sites , Chorismate Mutase/chemistry , Chorismate Mutase/metabolism , Escherichia coli/enzymology , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Phosphotransferases/antagonists & inhibitors , Phosphotransferases/chemistry , Phosphotransferases/metabolism , Protein Binding , Protein Conformation , Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Staurosporine/metabolism , Staurosporine/pharmacology
11.
J Chem Inf Model ; 49(10): 2202-10, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19795815

ABSTRACT

The postprocessing of high-throughput screening (HTS) results is complicated by the occurrence of false positives (inactive compounds misidentified as active by the primary screen) and false negatives (active compounds misidentified as inactive by the primary screen). An activity cutoff is frequently used to select "active" compounds from HTS data; however, this approach is insensitive to both false positives and false negatives. An alternative method that can minimize the occurrence of these artifacts will increase the efficiency of hit selection and therefore lead discovery. In this work, rather than merely using the activity of a given compound, we look at the presence and absence of activity among all compounds in its "chemical space neighborhood" to give a degree of confidence in its activity. We demonstrate that this local hit rate (LHR) analysis method outperforms hit selection based on ranking by primary screen activity values across ten diverse high throughput screens, spanning both cell-based and biochemical assay formats of varying biology and robustness. On average, the local hit rate analysis method was approximately 2.3-fold and approximately 1.3-fold more effective in identifying active compounds and active chemical series, respectively, than selection based on primary activity alone. Moreover, when applied to finding false negatives, this method was 2.3-fold better than ranking by primary activity alone. In most cases, novel hit series were identified that would have otherwise been missed. Additional uses of and observations regarding this HTS analysis approach are also discussed.


Subject(s)
High-Throughput Screening Assays/methods , Combinatorial Chemistry Techniques , Databases, Factual , False Negative Reactions , False Positive Reactions
12.
Bioorg Med Chem Lett ; 19(19): 5603-6, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19717303

ABSTRACT

Our efforts to reduce overall lipophilicity and increase ligand-lipophilicity efficiency (LLE) by modification of the 3- and 5-substituents of pyrazole 1, a novel non-nucleoside HIV reverse transcriptase inhibitor (NNRTI) prototype were unsuccessful. In contrast replacement of the substituted benzyl group with corresponding phenylthio or phenoxy groups resulted in marked improvements in potency, ligand efficiency (LE) and LLE.


Subject(s)
Anti-HIV Agents/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , Pyrazoles/chemistry , Reverse Transcriptase Inhibitors/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Chemical Phenomena , Drug Design , HIV Reverse Transcriptase/metabolism , Humans , Microsomes, Liver/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology
13.
Bioorg Med Chem Lett ; 18(24): 6562-7, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18945617

ABSTRACT

Succinyl hydroxamates 1 and 2 are disclosed as novel series of potent and selective inhibitors of procollagen C-proteinase (PCP) which may have potential as anti-fibrotic agents. Carboxamide 7 demonstrated good PCP inhibition and had excellent selectivity over MMPs involved in wound healing. In addition, 7 was effective in a cell-based model of collagen deposition (fibroplasia model) and was very effective at penetrating human skin in vitro. Compound 7 (UK-383,367) was selected as a candidate for evaluation in clinical studies as a topically applied, dermal anti-scarring agent.


Subject(s)
Bone Morphogenetic Protein 1/chemistry , Chemistry, Pharmaceutical/methods , Cicatrix, Hypertrophic/drug therapy , Cicatrix/drug therapy , Hydroxamic Acids/chemistry , Administration, Cutaneous , Cell Line, Tumor , Drug Design , Epidermis/drug effects , Fibrosis/pathology , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Oxazoles/chemistry
14.
Bioorg Med Chem Lett ; 18(15): 4308-11, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18625557

ABSTRACT

The structure-activity relationship and the synthesis of novel N-benzyl-N-(pyrrolidin-3-yl)carboxamides as dual serotonin (5-HT) and noradrenaline (NA) monoamine reuptake inhibitors are described. Compounds such as 18 exhibited dual 5-HT and NA reuptake inhibition, good selectivity over dopamine (DA) reuptake inhibition and drug-like physicochemical properties consistent with CNS target space. Compound 18 was selected for further preclinical evaluation.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Norepinephrine/analysis , Pyrrolidines/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Serotonin/analysis , Amides/chemistry , Animals , Central Nervous System/drug effects , Combinatorial Chemistry Techniques , Cytochrome P-450 CYP2D6 Inhibitors , Dogs , Dopamine Uptake Inhibitors/pharmacology , Drug Design , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Conformation , Pyrrolidines/pharmacology , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Structure-Activity Relationship
15.
J Mol Graph Model ; 24(3): 186-94, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16169759

ABSTRACT

Modern methods in genomics and high-throughput crystallography have ensured that we have access to a large and rapidly increasing, number of X-ray structures of protein-ligand complexes. A structure-based approach to drug design aims to exploit this information, but current methods are not suited to the examination of the large numbers of complexes available. We present computational tools that analyse and display multiple protein-ligand interactions and their properties in a simplified way. We illustrate how a novel binding-mode similarity metric is able to cluster 20 ligands complexed to HIV-1 reverse transcriptase into distinct groups. The properties of each cluster are then projected onto a group surface as a series of color gradients. Analysis of these surfaces reveals fundamental similarities and differences in the binding modes of these diverse compounds. In addition, the simplicity of the surface representations facilitates the transfer of information between the crystallographer, computational chemist and the chemist. We also show how two- and three-dimensional (2- and 3-D) similarities can be combined to provide enhanced understanding of 33 factor Xa inhibitor complexes. This methodology has enabled us to identify pharmaceutically relevant relationships between ligands and their binding modes that had previously been hidden in a wealth of data.


Subject(s)
Computational Biology/methods , Drug Design , Proteins/chemistry , Reverse Transcriptase Inhibitors/chemistry , Serine Proteinase Inhibitors/chemistry , Software , Cluster Analysis , Computer Simulation , Computer-Aided Design , Crystallography, X-Ray/methods , Databases, Protein , Factor Xa/chemistry , Factor Xa Inhibitors , Genomics , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/chemistry , Ligands , Models, Molecular , Protein Conformation , Proteomics , Structure-Activity Relationship , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL