Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915707

ABSTRACT

Injury can cause differentiated cells to undergo massive reprogramming to become proliferative to repair tissue via a cellular program called paligenosis. Gastric digestive-enzyme-secreting chief cells use paligenosis to reprogram into progenitor-like Spasmolytic-Polypeptide Expressing Metaplasia (SPEM) cells. Stage 1 of paligenosis is to downscale mature cell architecture via a process involving lysosomes. Here, we noticed that sulfated glycoproteins (which are metaplasia and cancer markers in mice and humans) were not digested during paligenosis but excreted into the gland lumen. Various genetic and pharmacological approaches showed that endoplasmic reticulum membranes and secretory granule cargo were also excreted and that the process proceeded in parallel with, but was independent lysosomal activity. 3-dimensional light and electron-microscopy demonstrated that excretion occurred via unique, complex, multi-chambered invaginations of the apical plasma membrane. As this lysosome-independent cell cleansing process does not seem to have been priorly described, we termed it "cathartocytosis". Cathartocytosis allows a cell to rapidly eject excess material (likely in times of extreme stress such as are induced by paligenosis) without waiting for autophagic and lysosomal digestion. We speculate the ejection of sulfated glycoproteins (likely mucins) would aid in downscaling and might also help bind and flush pathogens (like H pylori which causes SPEM) away from tissue.

2.
Cell Stem Cell ; 31(6): 886-903.e8, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38733994

ABSTRACT

Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (Esrrg, encoding ERRγ). Esrrg expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. EsrrgP2ACreERT2 lineage tracing revealed that Esrrg expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest Esrrg+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage in vivo and suggests ERRγ as a therapeutic target for PC-related disorders.


Subject(s)
Cell Differentiation , Parietal Cells, Gastric , Receptors, Estrogen , Stem Cells , Animals , Receptors, Estrogen/metabolism , Mice , Parietal Cells, Gastric/metabolism , Parietal Cells, Gastric/cytology , Stem Cells/metabolism , Stem Cells/cytology , Humans , Gastric Acid/metabolism , Cell Lineage
3.
EMBO J ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773319

ABSTRACT

A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.

5.
Dev Cell ; 59(9): 1175-1191.e7, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38521055

ABSTRACT

In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.


Subject(s)
Amino Acid Transport System y+ , Ferroptosis , Metaplasia , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species , Regeneration , Stomach , Animals , Reactive Oxygen Species/metabolism , Mice , Ferroptosis/physiology , Stomach/pathology , Regeneration/physiology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Metaplasia/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Gastric Mucosa/metabolism , Mice, Inbred C57BL , Chief Cells, Gastric/metabolism , Acinar Cells/metabolism , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Intercellular Signaling Peptides and Proteins
6.
PLoS Negl Trop Dis ; 18(2): e0011930, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324590

ABSTRACT

Ascariasis (roundworm) is the most common parasitic helminth infection globally and can lead to significant morbidity in children including chronic lung disease. Children become infected with Ascaris spp. via oral ingestion of eggs. It has long been assumed that Ascaris egg hatching and larval translocation across the gastrointestinal mucosa to initiate infection occurs in the small intestine. Here, we show that A. suum larvae hatched in the host stomach in a murine model. Larvae utilize acidic mammalian chitinase (AMCase; acid chitinase; Chia) from chief cells and acid pumped by parietal cells to emerge from eggs on the surface of gastric epithelium. Furthermore, antagonizing AMCase and gastric acid in the stomach decreases parasitic burden in the liver and lungs and attenuates lung disease. Given Ascaris eggs are chitin-coated, the gastric corpus would logically be the most likely organ for egg hatching, though this is the first study directly evincing the essential role of the host gastric corpus microenvironment. These findings point towards potential novel mechanisms for therapeutic targets to prevent ascariasis and identify a new biomedical significance of AMCase in mammals.


Subject(s)
Ascariasis , Ascaris suum , Chitinases , Lung Diseases , Swine Diseases , Child , Humans , Animals , Mice , Swine , Ascariasis/parasitology , Larva , Disease Models, Animal , Ascaris , Lung/parasitology , Stomach , Swine Diseases/parasitology , Mammals
7.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G504-G524, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38349111

ABSTRACT

Genotoxic agents such as doxorubicin (DXR) can cause damage to the intestines that can be ameliorated by fasting. How fasting is protective and the optimal timing of fasting and refeeding remain unclear. Here, our analysis of fasting/refeeding-induced global intestinal transcriptional changes revealed metabolic shifts and implicated the cellular energetic hub mechanistic target of rapamycin complex 1 (mTORC1) in protecting from DXR-induced DNA damage. Our analysis of specific transcripts and proteins in intestinal tissue and tissue extracts showed that fasting followed by refeeding at the time of DXR administration reduced damage and caused a spike in mTORC1 activity. However, continued fasting after DXR prevented the mTORC1 spike and damage reduction. Surprisingly, the mTORC1 inhibitor, rapamycin, did not block fasting/refeeding-induced reduction in DNA damage, suggesting that increased mTORC1 is dispensable for protection against the initial DNA damage response. In Ddit4-/- mice [DDIT4 (DNA-damage-inducible transcript 4) functions to regulate mTORC1 activity], fasting reduced DNA damage and increased intestinal crypt viability vs. ad libitum-fed Ddit4-/- mice. Fasted/refed Ddit4-/- mice maintained body weight, with increased crypt proliferation by 5 days post-DXR, whereas ad libitum-fed Ddit4-/- mice continued to lose weight and displayed limited crypt proliferation. Genes encoding epithelial stem cell and DNA repair proteins were elevated in DXR-injured, fasted vs. ad libitum Ddit4-/- intestines. Thus, fasting strongly reduced intestinal damage when normal dynamic regulation of mTORC1 was lost. Overall, the results confirm that fasting protects the intestines against DXR and suggests that fasting works by pleiotropic - including both mTORC1-dependent and independent - mechanisms across the temporally dynamic injury response.NEW & NOTEWORTHY New findings are 1) DNA damage reduction following a 24-h fast depends on the timing of postfast refeeding in relation to chemotherapy initiation; 2) fasting/refeeding-induced upregulation of mTORC1 activity is not required for early (6 h) protection against DXR-induced DNA damage; and 3) fasting increases expression of intestinal stem cell and DNA damage repair genes, even when mTORC1 is dysregulated, highlighting fasting's crucial role in regulating mTORC1-dependent and independent mechanisms in the dynamic recovery process.


Subject(s)
Doxorubicin , Intestine, Small , Intestines , Mice , Animals , Intestines/physiology , Mechanistic Target of Rapamycin Complex 1 , DNA Adducts , Fasting/physiology
8.
J Gastroenterol ; 59(4): 285-301, 2024 04.
Article in English | MEDLINE | ID: mdl-38242996

ABSTRACT

Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.


Subject(s)
Gastritis, Atrophic , Precancerous Conditions , Stomach Neoplasms , Animals , Mice , Stomach Neoplasms/genetics , Precancerous Conditions/pathology , Biomarkers , Metaplasia , Gastric Mucosa/pathology
9.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G205-G215, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38193187

ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful technique to identify novel cell markers, developmental trajectories, and transcriptional changes during cell differentiation and disease onset and progression. In this review, we highlight recent scRNA-seq studies of the gastric corpus in both human and murine systems that have provided insight into gastric organogenesis, identified novel markers for the various gastric lineages during development and in adults, and revealed transcriptional changes during regeneration and tumorigenesis. Overall, by elucidating transcriptional states and fluctuations at the cellular level in healthy and disease contexts, scRNA-seq may lead to better, more personalized clinical treatments for disease progression.


Subject(s)
Single-Cell Analysis , Stomach , Adult , Humans , Animals , Mice , Cell Differentiation , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
10.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260387

ABSTRACT

A healthy bladder requires the homeostatic maintenance of and rapid regeneration of urothelium upon stress/injury/infection. Several factors have been identified to play important roles in urothelial development, injury and disease response, however, little is known about urothelial regulation at homeostasis. Here, we identify a new role for IFRD1, a stress-induced gene that has recently been demonstrated to play a critical role in adult tissue proliferation and regeneration, in maintenance of urothelial function/ homeostasis in a mouse model. We show that the mouse bladder expresses IFRD1 at homeostasis and its loss alters the global transcriptome of the bladder with significant accumulation of cellular organelles including multivesicular bodies with undigested cargo, lysosomes and mitochondria. We demonstrate that IFRD1 interacts with several mRNA-translation-regulating factors in human urothelial cells and that the urothelium of Ifrd1-/- mice reveal decreased global translation and enhanced endoplasmic reticulum (ER) stress response. Ifrd1-/- bladders have activation of the unfolded protein response (UPR) pathway, specifically the PERK arm, with a concomitant increase in oxidative stress and spontaneous exfoliation of urothelial cells. Further, we show that such increase in cell shedding is associated with a compensatory proliferation of the basal cells but impaired regeneration of superficial cells. Finally, we show that upon loss of IFRD1, mice display aberrant voiding behavior. Thus, we propose that IFRD1 is at the center of many crucial cellular pathways that work together to maintain urothelial homeostasis, highlighting its importance as a target for diagnosis and/or therapy in bladder conditions.

11.
Prog Polym Sci ; 1482024 Jan.
Article in English | MEDLINE | ID: mdl-38188703

ABSTRACT

The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.

13.
Nat Immunol ; 24(9): 1443-1457, 2023 09.
Article in English | MEDLINE | ID: mdl-37563309

ABSTRACT

Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.


Subject(s)
Pancreas , Pancreatitis , Mice , Animals , Pancreas/pathology , Macrophages , Pancreatitis/genetics , Pancreatitis/pathology , Fibrosis , Pancreatic Neoplasms
14.
Front Cell Dev Biol ; 11: 1186638, 2023.
Article in English | MEDLINE | ID: mdl-37427381

ABSTRACT

Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.

15.
Cell Mol Gastroenterol Hepatol ; 16(3): 325-339, 2023.
Article in English | MEDLINE | ID: mdl-37270061

ABSTRACT

BACKGROUND & AIMS: Acute and chronic gastric injury induces alterations in differentiation within the corpus of the stomach called pyloric metaplasia. Pyloric metaplasia is characterized by the death of parietal cells and reprogramming of mitotically quiescent zymogenic chief cells into proliferative, mucin-rich spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Overall, pyloric metaplastic units show increased proliferation and specific expansion of mucous lineages, both by proliferation of normal mucous neck cells and recruitment of SPEM cells. Here, we identify Sox9 as a potential gene of interest in the regulation of mucous neck and SPEM cell identity in the stomach. METHODS: We used immunostaining and electron microscopy to characterize the expression pattern of SRY-box transcription factor 9 (SOX9) during murine gastric development, homeostasis, and injury in homeostasis, after genetic deletion of Sox9 and after targeted genetic misexpression of Sox9 in the gastric epithelium and chief cells. RESULTS: SOX9 is expressed in all early gastric progenitors and strongly expressed in mature mucous neck cells with minor expression in the other principal gastric lineages during adult homeostasis. After injury, strong SOX9 expression was induced in the neck and base of corpus units in SPEM cells. Adult corpus units derived from Sox9-deficient gastric progenitors lacked normal mucous neck cells. Misexpression of Sox9 during postnatal development and adult homeostasis expanded mucous gene expression throughout corpus units including within the chief cell zone in the base. Sox9 deletion specifically in chief cells blunts their reprogramming into SPEM. CONCLUSIONS: Sox9 is a master regulator of mucous neck cell differentiation during gastric development. Sox9 also is required for chief cells to fully reprogram into SPEM after injury.


Subject(s)
Chief Cells, Gastric , Animals , Mice , Chief Cells, Gastric/metabolism , Gastric Mucosa/metabolism , Metaplasia/metabolism , Parietal Cells, Gastric/metabolism , Stomach
16.
Biology (Basel) ; 12(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37237491

ABSTRACT

Cytokines and other growth factors are essential for cell expansion, health, function, and immune stimulation. Stem cells have the additional reliance on these factors to direct differentiation to the appropriate terminal cell type. Successful manufacturing of allogeneic cell therapies from induced pluripotent stem cells (iPSCs) requires close attention to the selection and control of cytokines and factors used throughout the manufacturing process, as well as after administration to the patient. This paper employs iPSC-derived natural killer cell/T cell therapeutics to illustrate the use of cytokines, growth factors, and transcription factors at different stages of the manufacturing process, ranging from the generation of iPSCs to controlling of iPSC differentiation into immune-effector cells through the support of cell therapy after patient administration.

17.
JCI Insight ; 8(9)2023 05 08.
Article in English | MEDLINE | ID: mdl-37014710

ABSTRACT

RNA-binding protein 47 (RBM47) is required for embryonic endoderm development, but a role in adult intestine is unknown. We studied intestine-specific Rbm47-knockout mice (Rbm47-IKO) following intestinal injury and made crosses into ApcMin/+ mice to examine alterations in intestinal proliferation, response to injury, and tumorigenesis. We also interrogated human colorectal polyps and colon carcinoma tissue. Rbm47-IKO mice exhibited increased proliferation and abnormal villus morphology and cellularity, with corresponding changes in Rbm47-IKO organoids. Rbm47-IKO mice adapted to radiation injury and were protected against chemical-induced colitis, with Rbm47-IKO intestine showing upregulation of antioxidant and Wnt signaling pathways as well as stem cell and developmental genes. Furthermore, Rbm47-IKO mice were protected against colitis-associated cancer. By contrast, aged Rbm47-IKO mice developed spontaneous polyposis, and Rbm47-IKO ApcMin/+ mice manifested an increased intestinal polyp burden. RBM47 mRNA was decreased in human colorectal cancer versus paired normal tissue, along with alternative splicing of tight junction protein 1 mRNA. Public databases revealed stage-specific reduction in RBM47 expression in colorectal cancer associated independently with decreased overall survival. These findings implicate RBM47 as a cell-intrinsic modifier of intestinal growth, inflammatory, and tumorigenic pathways.


Subject(s)
Colitis , Colonic Neoplasms , Adult , Mice , Humans , Animals , Aged , Mice, Knockout , Colitis/chemically induced , Colitis/genetics , Colonic Neoplasms/genetics , Carcinogenesis/genetics , Cell Proliferation , RNA, Messenger/genetics , Oxidative Stress , RNA-Binding Proteins/genetics
18.
Front Cell Dev Biol ; 11: 1151790, 2023.
Article in English | MEDLINE | ID: mdl-36994101

ABSTRACT

Introduction: Plasticity is an inherent property of the normal gastrointestinal tract allowing for appropriate response to injury and healing. However, the aberrancy of adaptable responses is also beginning to be recognized as a driver during cancer development and progression. Gastric and esophageal malignancies remain leading causes of cancer-related death globally as there are limited early disease diagnostic tools and paucity of new effective treatments. Gastric and esophageal adenocarcinomas share intestinal metaplasia as a key precancerous precursor lesion. Methods: Here, we utilize an upper GI tract patient-derived tissue microarray that encompasses the sequential development of cancer from normal tissues to illustrate the expression of a set of metaplastic markers. Results: We report that in contrast to gastric intestinal metaplasia, which has traits of both incomplete and complete intestinal metaplasia, Barrett's esophagus (i.e., esophageal intestinal metaplasia) demonstrates hallmarks of incomplete intestinal metaplasia. Specifically, this prevalent incomplete intestinal metaplasia seen in Barrett's esophagus manifests as concurrent development and expression of both gastric and intestinal traits. Additionally, many gastric and esophageal cancers display a loss of or a decrease in these characteristic differentiated cell properties, demonstrating the plasticity of molecular pathways associated with the development of these cancers. Discussion: Further understanding of the commonalities and differences governing the development of upper GI tract intestinal metaplasias and their progression to cancer will lead to improved diagnostic and therapeutic avenues.

19.
Nat Commun ; 14(1): 822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788228

ABSTRACT

Peritoneal metastasis is the leading cause of death for gastrointestinal cancers. The native and therapy-induced ascites ecosystems are not fully understood. Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/immune cells from 35 patients with/without gastric cancer peritoneal metastasis (GCPM). During GCPM progression, an increase is seen of monocyte-like dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting capacity and correlate with poor gastric cancer (GC) prognosis. We also describe the evolution of monocyte-like DCs and regulatory and proliferative T cells following therapy. Moreover, we track GC evolution, identifying high-plasticity GC clusters that exhibit a propensity to shift to a high-proliferative phenotype. Transitions occur via the recently described, autophagy-dependent plasticity program, paligenosis. Two autophagy-related genes (MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and autophagy inhibitors induce apoptosis in patient-derived organoids. Our findings provide insights into the developmental trajectories of cancer/immune cells underlying GCPM progression and therapy resistance.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Ascites/genetics , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/secondary , Peritoneum/pathology , Stomach Neoplasms/pathology
20.
Talanta ; 254: 124156, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36525867

ABSTRACT

Human chorionic gonadotropin (hCG), a glycoprotein hormone secreted from the placenta, is an important biomarker for pregnancy. In this study, we designed a precise, rapid and fully automatic device with an electrochemical point-of-care biosensor capable of quantitative hCG detection from human urine samples for early pregnancy detection. Gold and Ag/AgCl electrodes, whose structure with optimum isopotential region and current density, were simulated using COMSOL Multiphysics® software and custom-made from Flex Medical. The sensing surface was fabricated with DSP self-assembled monolayers (SAMs) and covalently immobilized anti-hCG-beta antibody. The detection method involved a sandwich assay using anti-hCG alpha-HRP. Based on an automated agitation design implemented in our device, the surface reaction rate is significantly improved comparing to routinely performed sandwich assays, and therefore a rapid detection of very low concentration can be achieved. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) measurements were used to characterize the immobilization of the antibodies and to determine the sensor activities respectively. The sensors displayed a limit of detection (LOD) of 2.17 mIU/ml within established clinical hCG levels for early detection of pregnancy. They responded very well to hCG, but not to luteinizing hormone (LH), which has a high degree of cross-reactivity with hCG. The results showed that the immunosensor has high specificity, good reproducibility, and long-term stability for the detection of hCG in urine samples.


Subject(s)
Biosensing Techniques , Pregnancy Tests , Pregnancy , Female , Humans , Biosensing Techniques/methods , Immunoassay/methods , Point-of-Care Systems , Reproducibility of Results , Chorionic Gonadotropin
SELECTION OF CITATIONS
SEARCH DETAIL
...