Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 696: 109-154, 2024.
Article in English | MEDLINE | ID: mdl-38658077

ABSTRACT

The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F-) exporters: the CLCF F-/H+ antiporter and the Fluc F- channel. The CLCF antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLCF transport process, including its selectivity for F- over HF. In contrast, the Fluc F- channel presents a novel architecture as a dual topology dimer, featuring two pores for F- export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F- export in Fluc and reveal details about the coordination and hydration of both F- and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.


Subject(s)
Biochemistry , Computational Biology , Fluorides , Molecular Dynamics Simulation , Fluorides/metabolism , Membrane Transport Proteins/metabolism , Ion Transport/physiology , Chloride Channels/chemistry , Chloride Channels/metabolism , Electrophysiology , Biochemistry/methods , Computational Biology/methods , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Transport, Active/physiology
2.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606592

ABSTRACT

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Subject(s)
Lipoylation , Molecular Dynamics Simulation , TEA Domain Transcription Factors , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Humans , Acyltransferases/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/chemistry , Allosteric Regulation/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , Protein Binding , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , TEA Domain Transcription Factors/chemistry , TEA Domain Transcription Factors/metabolism , Trans-Activators/metabolism , Trans-Activators/chemistry , Trans-Activators/antagonists & inhibitors , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Transcriptional Coactivator with PDZ-Binding Motif Proteins/chemistry , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/chemistry , YAP-Signaling Proteins/metabolism
3.
J Chem Inf Model ; 63(8): 2445-2455, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37053383

ABSTRACT

Fluoride is a natural antibiotic abundantly present in the environment and, in micromolar concentrations, is able to inhibit enzymes necessary for bacteria to survive. However, as is the case with many antibiotics, bacteria have evolved resistance methods, including through the use of recently discovered membrane proteins. One such protein is the CLCF F-/H+ antiporter protein, a member of the CLC superfamily of anion-transport proteins. Though previous studies have examined this F- transporter, many questions are still left unanswered. To reveal details of the transport mechanism used by CLCF, we have employed molecular dynamics simulations and umbrella sampling calculations. Our results have led to several discoveries, including the mechanism of proton import and how it is able to aid in the fluoride export. Additionally, we have determined the role of the previously identified residues Glu118, Glu318, Met79, and Tyr396. This work is among the first studies of the CLCF F-/H+ antiporter and is the first computational investigation to model the full transport process, proposing a mechanism which couples the F- export with the H+ import.


Subject(s)
Antiporters , Fluorides , Antiporters/chemistry , Antiporters/metabolism , Fluorides/chemistry , Protons , Ion Transport , Membrane Transport Proteins/metabolism
4.
RSC Chem Biol ; 2(3): 830-834, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-34212150

ABSTRACT

Human phenol sulfotransferases mediate the transfer of a sulfuryl moiety from the activated sulfate donor PAPS to hydroxy-containing substrates, altering substrate solubility and charge to affect phase II metabolism and cell signaling. Here, we present the development, computational modeling, in vitro enzymology, and biological application of STS-3, an activity-based fluorescent sensor for the SULT1A1 isoform.

SELECTION OF CITATIONS
SEARCH DETAIL
...