Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 113(3): 941-6, 1991 Nov.
Article in English | MEDLINE | ID: mdl-1821861

ABSTRACT

The developmental potential of parthenogenetic cells derived from different mouse strains was investigated by examining their distribution in various tissues of adult aggregation chimeras. Using GPI-1 allozymes as marker, no striking differences were observed between chimeras whose parthenogenetic cells were derived from activated oocytes isolated from females of different genetic backgrounds, (C57BL/6 x CBA/J) F1, CFLP, 129, and SWR. In all the combinations tested, parthenogenetic cells were consistently absent from skeletal muscle, but there were varying contributions to most other tissues. These results suggest that the maternal duplication of chromosomes containing imprinted gene(s) responsible for the systematic elimination of parthenogenetic cells from skeletal muscle, are not subject to a pronounced influence of genotype-specific modifiers. However, the contribution of parthenogenetic cells to the brain does appear to be influenced by strain background, since a marked improvement in the survival of CFLP, 129 and perhaps SWR parthenogenetic cells in chimeric brains was observed compared with F2 cells.


Subject(s)
Chimera/physiology , Gene Expression/genetics , Parthenogenesis/physiology , Animals , Chimera/genetics , Genotype , Mice , Mice, Inbred Strains , Mice, Transgenic
2.
Development ; 108(1): 203-11, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2351065

ABSTRACT

The fate of parthenogenetic cells was investigated during development of fetal and early postnatal chimeras. On day 13 of embryonic development, considerable contribution of parthenogenetic cells was observed in all tissues of chimeric embryos, although selection against parthenogenetic cells seemed to start before day 13. Between days 13 and 15 of development, parthenogenetic cells came under severe selective pressure, which was most striking in tongue. The disappearance of parthenogenetic cells from tongue coincided with the beginning of myoblast fusion in this tissue. Severe selection against parthenogenetic cells was also observed in pancreas and liver, although in the latter, parthenogenetic cells were eliminated later than in skeletal muscle or pancreas. In other tissues, parthenogenetic cells may persist and participate to a considerable extent throughout the gestation period and beyond, although a significant decrease was observed in all tissues. Parthenogenetic in equilibrium fertilized chimeras were significantly smaller than their non-chimeric littermates at all developmental stages. These results suggest that the absence of paternal chromosomes is largely incompatible with the maintenance of specific differentiated cell types. Furthermore, paternally derived genes seem to be involved in the regulation of proliferation of all cell types, as indicated by the drastic growth decceleration of parthenogenetic in equilibrium fertilized chimeras and the overall decrease of parthenogenetic cells during fetal development. Chromosomal imprinting may have a role in maintaining a balance between cell growth and differentiation during embryonic development. The major exception to the selective elimination of parthenogenetic cells appear to be the germ cells; viable offspring derived from parthenogenetic oocytes were detected, sometimes at a high frequency in litters of female parthenogenetic in equilibrium fertilized chimeras.


Subject(s)
Chimera/physiology , Fetus/physiology , Parthenogenesis/physiology , Animals , Cell Differentiation/physiology , Cell Division/physiology , Female , Mice , Tongue/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...