Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 204: 116537, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838391

ABSTRACT

Procellariiform seabirds can accumulate high levels of plastic in their gastrointestinal tracts, which can cause physical damage and potentially provides a contamination route for trace elements. We examined plastic ingestion and trace element contamination of fledgling Manx shearwaters Puffinus puffinus that were harvested for human consumption in 2003 and 2018 on Skúvoy, Faroe Islands (North Atlantic Ocean). Overall, 88% of fledglings contained plastic in their gastrointestinal tracts, with a mean (± SD) of 7.2 ± 6.6 items weighing 0.007 ± 0.016 g. Though the incidence was similar, fledglings ingested significantly more plastic in 2018 compared to 2003. Hepatic trace element concentrations were unrelated to plastic ingestion. Hepatic carbon (δ13C) and nitrogen (δ15N) stable isotope values were significantly lower in birds sampled in 2018 versus 2003, potentially reflecting further offshore feeding at lower trophic levels. Future research is needed to understand the extent of plastic ingestion by Faroe Islands seabirds.

2.
Arch Environ Contam Toxicol ; 86(4): 363-374, 2024 May.
Article in English | MEDLINE | ID: mdl-38762667

ABSTRACT

Mercury (Hg) is an environmental contaminant that can negatively impact the health of humans and wildlife. Albatrosses and large petrels show some of the highest levels of Hg contamination among birds, with potential repercussions for reproduction and survival. Here, body feather total Hg (THg) concentrations were determined in breeding adults of five species of albatrosses and large petrels in the foraging guild at South Georgia during the mid-2010s. We tested the effects of species, sex and trophic ecology (inferred from stable isotopes) on THg concentrations and compared our results with published values from past decades. Feather THg concentrations differed significantly among species (range: 1.9-49.6 µg g-1 dw), and were highest in wandering albatrosses Diomedea exulans, intermediate in black-browed albatrosses Thalassarche melanophris and northern giant petrels Macronectes halli, and lowest in southern giant petrels M. giganteus and white-chinned petrels Procellaria aequinoctialis. Females were more contaminated than males in all species, potentially due to differences in distributions and diet composition. Across species, THg concentrations were not correlated with feather δ13C or δ15N values, implying that species effects (e.g., breeding and moulting frequencies) may be more important than trophic effects in explaining feather THg concentrations in this foraging guild. Within species, the only significant correlation was between THg and δ13C in wandering albatrosses, which could reflect higher Hg exposure in subtropical waters. Comparisons with THg concentrations from past studies, which reflect contamination from 10 to > 60 years ago, revealed considerable annual variation and some evidence for increases over time for wandering and black-browed albatrosses since before 1950 and from the late 1980s, respectively.


Subject(s)
Birds , Environmental Monitoring , Feathers , Mercury , Feathers/chemistry , Animals , Mercury/analysis , Female , Male , Environmental Pollutants/analysis , Environmental Pollutants/metabolism
3.
Chemosphere ; 346: 140630, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939926

ABSTRACT

Mercury (Hg) is a globally important pollutant that can negatively impact metabolic, endocrine and immune systems of marine biota. Seabirds are long-lived marine top predators and hence are at risk of bioaccumulating high Hg concentrations from their prey. Here, we measured blood total mercury (THg) concentrations and relationships with physiology and breeding parameters of breeding brown skuas (Stercorarius antarcticus) (n = 49 individuals) at Esperanza/Hope Bay, Antarctic Peninsula. Mean blood THg concentrations were similar in males and females despite the differences in body size and breeding roles, but differed between study years. Immune markers (hematocrit, Immunoglobulin Y [IgY] and albumin) were negatively correlated with blood THg concentrations, which likely indicates a disruptive effect of Hg on immunity. Alanine aminotransferase (GPT) activity, reflecting liver dysfunction, was positively associated with blood THg. Additionally, triacylglycerol and albumin differed between our study years, but did not correlate with Hg levels, and so were more likely to reflect changes in diet and nutritional status rather than Hg contamination. Egg volume correlated negatively with blood THg concentrations. Our study provides new insights into the sublethal effects of Hg contamination on immunity, liver function and breeding parameters in seabirds. In this Antarctic species, exposure to sublethal Hg concentrations reflects the short-term risks which could make individuals more susceptible to environmental stressors, including ongoing climatic changes.


Subject(s)
Charadriiformes , Mercury , Humans , Male , Animals , Female , Birds/metabolism , Mercury/analysis , Antarctic Regions , Environmental Monitoring , Charadriiformes/metabolism , Liver/metabolism , Immunocompetence , Albumins/metabolism
4.
Environ Pollut ; 297: 118841, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35026328

ABSTRACT

Antarctic marine ecosystems are often considered to be pristine environments, yet wildlife in the polar regions may still be exposed to high levels of environmental contaminants. Here, we measured total mercury (THg) concentrations in blood samples from adult brown skuas Stercorarius antarcticus lonnbergi (n = 82) from three breeding colonies south of the Antarctic Polar Front in the Southern Ocean (southwest Atlantic region): (i) Bahía Esperanza/Hope Bay, Antarctic Peninsula; (ii) Signy Island, South Orkney Islands; and, (iii) Bird Island, South Georgia. Blood THg concentrations increased from the Antarctic Peninsula towards the Antarctic Polar Front, such that Hg contamination was lowest at Bahía Esperanza/Hope Bay (mean ± SD, 0.95 ± 0.45 µg g-1 dw), intermediate at Signy Island (3.42 ± 2.29 µg g-1 dw) and highest at Bird Island (4.47 ± 1.10 µg g-1 dw). Blood THg concentrations also showed a weak positive correlation with δ15N values, likely reflecting the biomagnification process. Males had higher Hg burdens than females, which may reflect deposition of Hg into eggs by females or potentially differences in their trophic ecology. These data provide important insights into intraspecific variation in contamination and the geographic transfer of Hg to seabirds in the Southern Ocean.


Subject(s)
Mercury , Animals , Antarctic Regions , Ecosystem , Environmental Monitoring , Female , Male , Mercury/analysis , Oceans and Seas , Sex Characteristics
5.
Proc Biol Sci ; 287(1941): 20202683, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33352077

ABSTRACT

Mercury (Hg) is an environmental contaminant which, at high concentrations, can negatively influence avian physiology and demography. Albatrosses (Diomedeidae) have higher Hg burdens than all other avian families. Here, we measure total Hg (THg) concentrations of body feathers from adult grey-headed albatrosses (Thalassarche chrysostoma) at South Georgia. Specifically, we (i) analyse temporal trends at South Georgia (1989-2013) and make comparisons with other breeding populations; (ii) identify factors driving variation in THg concentrations and (iii) examine relationships with breeding success. Mean ± s.d. feather THg concentrations were 13.0 ± 8.0 µg g-1 dw, which represents a threefold increase over the past 25 years at South Georgia and is the highest recorded in the Thalassarche genus. Foraging habitat, inferred from stable isotope ratios of carbon (δ13C), significantly influenced THg concentrations-feathers moulted in Antarctic waters had far lower THg concentrations than those moulted in subantarctic or subtropical waters. THg concentrations also increased with trophic level (δ15N), reflecting the biomagnification process. There was limited support for the influence of sex, age and previous breeding outcome on feather THg concentrations. However, in males, Hg exposure was correlated with breeding outcome-failed birds had significantly higher feather THg concentrations than successful birds. These results provide key insights into the drivers and consequences of Hg exposure in this globally important albatross population.


Subject(s)
Birds , Environmental Monitoring , Mercury , Water Pollutants, Chemical , Animals , Antarctic Regions , Breeding , Ecology , Ecosystem , Feathers , Food Chain , Isotopes , Male , Nutritional Status
SELECTION OF CITATIONS
SEARCH DETAIL
...