Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 41(6): 1395-408, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11580843

ABSTRACT

Streptococcus pneumoniae colonizes the nasopharynx in up to 40% of healthy subjects, and is a leading cause of middle ear infections (otitis media), meningitis and pneumonia. Pneumococci adhere to glycosidic receptors on epithelial cells and to immobilized fibronectin, but the bacterial adhesins mediating these reactions are largely uncharacterized. In this report we describe a novel pneumococcal protein PavA, which binds fibronectin and is associated with pneumococcal adhesion and virulence. The pavA gene, present in 64 independent isolates of S. pneumoniae tested, encodes a 551 amino acid residue polypeptide with 67% identical amino acid sequence to Fbp54 protein in Streptococcus pyogenes. PavA localized to the pneumococcal cell outer surface, as demonstrated by immunoelectron microscopy, despite lack of conventional secretory or cell-surface anchorage signals within the primary sequence. Full-length recombinant PavA polypeptide bound to immobilized human fibronectin in preference to fluid-phase fibronectin, in a heparin-sensitive interaction, and blocked binding of wild-type pneumococcal cells to fibronectin. However, a C-terminally truncated PavA' polypeptide (362 aa residues) failed to bind fibronectin or block pneumococcal cell adhesion. Expression of pavA in Enterococcus faecalis JH2-2 conferred > sixfold increased cell adhesion levels to fibronectin over control JH2-2 cells. Isogenic mutants of S. pneumoniae, either abrogated in PavA expression or producing a 42 kDa C-terminally truncated protein, showed up to 50% reduced binding to immobilized fibronectin. Inactivation of pavA had no effects on growth rate, cell morphology, cell-surface physico-chemical properties, production of pneumolysin, autolysin, or surface proteins PspA and PsaA. Isogenic pavA mutants of encapsulated S. pneumoniae D39 were approximately 104-fold attenuated in virulence in the mouse sepsis model. These results provide evidence that PavA fibronectin-binding protein plays a direct role in the pathogenesis of pneumococcal infections.


Subject(s)
Adhesins, Bacterial , Bacterial Proteins/genetics , Carrier Proteins/genetics , Genes, Bacterial , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Animals , Bacterial Adhesion , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Base Sequence , Carrier Proteins/metabolism , DNA Primers/genetics , DNA, Bacterial/genetics , Fibronectins , Gene Expression , Humans , Mice , Mice, Inbred BALB C , Microscopy, Immunoelectron , Pneumococcal Infections/etiology , Sepsis/etiology , Streptococcus pneumoniae/metabolism , Streptococcus pneumoniae/ultrastructure , Virulence/genetics , Virulence/physiology
3.
Antonie Van Leeuwenhoek ; 79(3-4): 337-43, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11816977

ABSTRACT

Biofilms on silicone rubber voice prostheses are the major cause for frequent failure and replacement of these devices. The presence of both bacterial strains and yeast has been suggested to be crucial for the development of voice prosthetic biofilms. Adhesive interactions between Candida albicans, Candida krusei, and Candida tropicalis with 14 bacterial strains, all isolated from explanted voice prostheses were investigated in a parallel plate flow chamber. Bacteria were first allowed to adhere to silicone rubber, after which the flow chamber was perfused with yeast, suspended either in saliva or buffer. Generally, when yeast were adhering from buffer and saliva, the presence of adhering bacteria suppressed adhesion of yeast. In saliva, Rothia dentocariosa and Staphylococcus aureus enhanced adhesion of yeast, especially of C. albicans. This study shows that bacterial adhesion mostly reduces subsequent adhesion of yeast, while only a few bacterial strains stimulate adhesion of yeast, provided salivary adhesion mediators are present. Interestingly, different clinical studies have identified R. dentocariosa and S. aureus in biofilms on explanted prostheses of patients needing most frequent replacement, while C. albicans is one of the yeast generally held responsible for silicone rubber deterioration.


Subject(s)
Bacterial Adhesion , Candida/physiology , Cell Adhesion , Larynx, Artificial/microbiology , Silicones , Bacteria/growth & development , Biofilms , Humans , Microbiological Techniques , Saliva
4.
J Microbiol Methods ; 40(3): 225-32, 2000 May.
Article in English | MEDLINE | ID: mdl-10802139

ABSTRACT

Candida belongs to the normal human microflora and are found adhering to a number of human body tissues as well as to a variety of biomaterials implants. Often, yeasts adhere in association with bacteria, but to date there is no definitive assay to investigate adhesive interactions between yeasts and bacteria adhering on surfaces. Although we recently described the use of a parallel plate flow chamber to this purpose [Millsap, K.W., Bos, R., Van der Mei, H. C., Busscher, H.J., 1998. Adhesive interactions between medically important yeasts and bacteria. FEMS Microbiol. Rev. 21, 321-336], the method was slow and evaluation of a large number of strains showed major biological variation between experiments. Here, we describe a new assay for the simultaneous determination of the adhesive interactions between yeasts and different bacterial strains on a surface under controlled hydrodynamic conditions. On an acrylic surface, the presence of adhering bacteria suppressed adhesion of Candida albicans ATCC 10261 to various degrees, depending on the bacterial strain involved. Suppression of C. albicans ATCC 10261 adhesion was strongest by Actinomyces naeslundii T14V-J1, while adhering Streptococcus gordonii NCTC 7869 caused the weakest suppression of yeast adhesion. When adhering yeasts and bacteria were challenged with the high detachment force of a passing liquid-air interface, the majority of the yeasts detached, while C. albicans adhering on the control, bare polymethylmethacrylate surface formed aggregates. Summarizing, this study presents a new method to determine suggested adhesive interactions between yeasts and adhering bacteria under controlled hydrodynamic conditions. However, the results seem to indicate that these adhesive interactions may well not exist, but that instead different bacterial strains have varying abilities to discourage yeast adhesion.


Subject(s)
Bacterial Adhesion , Candida albicans/physiology , Cell Adhesion , Microbiological Techniques , Actinomyces/physiology , Polymethyl Methacrylate , Staphylococcus aureus/physiology , Streptococcus/physiology
5.
FEMS Immunol Med Microbiol ; 26(1): 69-74, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10518044

ABSTRACT

Candida albicans surfaces are extremely sensitive to changes in growth conditions. In this study, adhesion to glass of aerated and non-aerated C. albicans ATCC 10261 in the presence and absence of adhering Streptococcus gordonii NCTC 7869 was determined in a parallel plate flow chamber. In addition, the influence of aeration on the yeast cell surface hydrophobicity, surface charge, and elemental cell surface composition was measured. S. gordonii adhering at the glass surface caused a reduction in the initial deposition rate of C. albicans, regardless of aeration. In a stationary end-point, only adhesion of non-aerated C. albicans was suppressed by the adhering S. gordonii. Non-aerated yeasts had a higher O/C elemental surface concentration ratio, indicative of cell surface polysaccharides, than aerated yeasts, at the expense of nitrogen-rich cell surface proteins. Both yeasts were essentially uncharged, but the nitrogen-rich cell surface of aerated yeasts had a slightly higher water contact angle than non-aerated yeasts. Summarizing, this study suggests that highly localized, hydrophobic cell surface proteins on C. albicans are a prerequisite for their interaction with adhering streptococci.


Subject(s)
Bacterial Adhesion/physiology , Candida albicans/physiology , Streptococcus/physiology , Aerobiosis/physiology , Candida albicans/cytology , Cell Adhesion/physiology , Microbiological Techniques , Surface Properties
6.
Antonie Van Leeuwenhoek ; 75(4): 351-9, 1999 May.
Article in English | MEDLINE | ID: mdl-10510723

ABSTRACT

Adhesive interactions between Candida albicans and oral bacteria are generally thought to play a crucial role in the microbial colonization of denture acrylic, which may lead to denture stomatitis. This study investigated the influence of saliva on the adhesive interactions between C. albicans and Streptococcus sanguis or Actinomyces naeslundii on denture acrylic. First, bacteria were allowed to adhere to the acrylic surface from a flowing suspension, and subsequently yeasts were flowed over the acrylic surface. The organisms were assayed in the presence or absence of human whole saliva. All experiments were carried out in a parallel plate flow chamber and enumeration was done in situ with an image analysis system. In the absence of adhering bacteria, adhesion of C. albicans from buffer was more extensive than from saliva. However, in the presence of adhering bacteria, yeast adhesion from saliva was increased with respect to adhesion of yeasts from buffer, indicating that specific salivary components constitute a bridge between bacteria and yeasts. In all cases, yeast aggregates consisting of 3 to 5 yeast cells were observed adhering to the surface. A surface physico-chemical analysis of the microbial cell surfaces prior to and after bathing the microorganisms in saliva, suggests that this bridging is mediated by acid-base interactions since all strains show a major increase in electron-donating surface free energy parameters upon bathing in saliva, with no change in their zeta potentials. The surface physico-chemical analysis furthermore suggests that S. sanguis and A. naeslundii may use a different mechanism for adhesive interactions with C. albicans in saliva.


Subject(s)
Acrylic Resins , Actinomyces/physiology , Candida albicans/physiology , Saliva , Streptococcus sanguis/physiology , Actinomyces/chemistry , Candida albicans/chemistry , Cell Adhesion , Dentures , Humans , Mouth/microbiology , Saliva/chemistry , Streptococcus sanguis/chemistry
7.
FEMS Microbiol Rev ; 21(4): 321-36, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9532746

ABSTRACT

Yeasts are being increasingly identified as important organisms in human infections. Adhesive interactions between yeasts and bacteria may contribute to yeast retention at body sites. Methods for studying adhesive interactions between bacterial strains are well known, and range from simple macroscopic methods to flow chamber systems with complex image analysis capabilities. The adhesive interactions between bacteria and yeasts have been studied employing several of the methods originally developed for studying adhesive interactions between bacteria. However, in many of the methods employed the larger size of the yeasts as compared with bacteria results in strong sedimentation of the yeasts, often invalidating the method adapted. In addition, most methods are semi-quantitative and do not properly control mass transport. Consequently, adhesive interaction mechanisms between yeasts and bacteria identified hitherto, including lectin binding and protein-protein interactions, must be regarded with caution. Extensive physico-chemical characteristics of yeast cell surfaces are not available and a physico-chemical mechanism has not yet been put forth. A new method for quantifying adhesive interactions between yeasts and bacteria is proposed, based on the use of a parallel plate flow chamber, in which the influence of adhering bacteria upon the kinetics of yeast adhesion and aggregation of the adhering yeasts is quantitatively evaluated, under carefully controlled mass transport.


Subject(s)
Bacteria/cytology , Bacterial Adhesion/physiology , Bacterial Infections , Mycoses , Yeasts/cytology , Humans
8.
Biomaterials ; 18(1): 87-91, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9003903

ABSTRACT

Coating uroepithelial cells or catheter materials with lactobacilli has been shown to retard the development of a uropathogenic biofilm, with biosurfactant production and strong adhesion being two prerequisite properties of the Lactobacillus strains to be employed. In this paper, adhesion of six selected Lactobacillus strains to silicone rubber and glass in urine and in a phosphate buffer was studied using a parallel plate flow chamber. In addition, adhesive cell surface properties of the lactobacilli, i.e. the pH dependences of their zeta potentials and their hydrophobicities by water contact angles, were determined. L. acidophilus ATCC 4356 and L. fermentum B54 were the only strains showing significant adhesion to both hydrophobic silicone rubber and hydrophilic glass, possibly by virtue of their high cell surface hydrophobicities (water contact angles of 68 and 75 degrees, respectively) and small zeta potentials (-10.0 and -8.1 mV in buffer, respectively). Both hydrophobic Lactobacillus strains adhered less well in urine than in buffer. The remaining Lactobacillus strains studied were hydrophilic, with water contact angles between 25 and 36 degrees, and had highly negative zeta potentials, reaching -37.7 mV in buffer. Adhesion of these highly negatively charged, hydrophilic strains in buffer was essentially absent, while for some of these strains minor adhesion in urine was observed. This study demonstrates that the adhesion of lactobacilli to substrata differs with strain hydrophobicity and charge, and that urinary components can affect the ability of hydrophilic Lactobacillus strains to adhere to substrata.


Subject(s)
Bacterial Adhesion , Glass , Lactobacillus/physiology , Phosphates/chemistry , Silicone Elastomers , Urine/chemistry , Adult , Buffers , Humans , Hydrogen-Ion Concentration , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...