Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(9): e72994, 2013.
Article in English | MEDLINE | ID: mdl-24039840

ABSTRACT

Intervertebral disc (IVD) cells derived from degenerate tissue respond aberrantly to mechanical stimuli, potentially due to altered mechanotransduction pathways. Elucidation of the altered, or alternative, mechanotransduction pathways operating with degeneration could yield novel targets for the treatment of IVD disease. Our aim here was to investigate the involvement of RGD-recognising integrins and associated signalling molecules in the response to cyclic tensile strain (CTS) of human annulus fibrosus (AF) cells derived from non-degenerate and degenerate IVDs. AF cells from non-degenerate and degenerate human IVDs were cyclically strained with and without function blocking RGD - peptides with 10% strain, 1.0 Hz for 20 minutes using a Flexercell® strain device. QRT-PCR and Western blotting were performed to analyse gene expression of type I collagen and ADAMTS -4, and phosphorylation of focal adhesion kinase (FAK), respectively. The response to 1.0 Hz CTS differed between the two groups of AF cells, with decreased ADAMTS -4 gene expression and decreased type I collagen gene expression post load in AF cells derived from non-degenerate and degenerate IVDs, respectively. Pre-treatment of non-degenerate AF cells with RGD peptides prevented the CTS-induced decrease in ADAMTS -4 gene expression, but caused an increase in expression at 24 hours, a response not observed in degenerate AF cells where RGD pre-treatment failed to inhibit the mechano-response. In addition, FAK phosphorylation increased in CTS stimulated AF cells derived from non-degenerate, but not degenerate IVDs, with RGD pre-treatment inhibiting the CTS - dependent increase in phosphorylated FAK. Our findings suggest that RGD -integrins are involved in the 1.0 Hz CTS - induced mechano-response observed in AF cells derived from non-degenerate, but not degenerate IVDs. This data supports our previous work, suggesting an alternative mechanotransduction pathway may be operating in degenerate AF cells.


Subject(s)
Integrins/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/cytology , Mechanotransduction, Cellular/physiology , Signal Transduction , Cell Survival , Cells, Cultured , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Mechanotransduction, Cellular/drug effects , Oligopeptides/pharmacology , Phosphorylation/drug effects
2.
Arthritis Res Ther ; 13(1): R8, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21276216

ABSTRACT

INTRODUCTION: Recent evidence suggests that intervertebral disc (IVD) cells derived from degenerative tissue are unable to respond to physiologically relevant mechanical stimuli in the 'normal' anabolic manner, but instead respond by increasing matrix catabolism. Understanding the nature of the biological processes which allow disc cells to sense and respond to mechanical stimuli (a process termed 'mechanotransduction') is important to ascertain whether these signalling pathways differ with disease. The aim here was to investigate the involvement of interleukin (IL)-1 and IL-4 in the response of annulus fibrosus (AF) cells derived from nondegenerative and degenerative tissue to cyclic tensile strain to determine whether cytokine involvement differed with IVD degeneration. METHODS: AF cells were isolated from nondegenerative and degenerative human IVDs, expanded in monolayers and cyclically strained in the presence or absence of the cytokine inhibitors IL-1 receptor antagonist (IL-1Ra) or IL-4 receptor antibody (IL-4RAb) with 10% strain at 1.0 Hz for 20 minutes using a Flexcell strain device. Total RNA was extracted from the cells at time points of baseline control and 1 or 24 hours poststimulation. Quantitative real-time polymerase chain reaction was used to analyse the gene expression of matrix proteins (aggrecan and type I collagen) and enzymes (matrix metalloproteinase 3 (MMP3) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif 4 (ADAMTS4)). RESULTS: Expression of catabolic genes (MMP3 and ADAMTS4) decreased in AF cells derived from nondegenerative tissue in response to 1.0-Hz stimulation, and this decrease in gene expression was inhibited or increased following pretreatment of cells with IL-1Ra or IL-4RAb respectively. Treatment of AF cells derived from degenerative tissue with an identical stimulus (1.0-Hz) resulted in reduced anabolic gene expression (aggrecan and type I collagen), with IL-1Ra or IL-4RAb pretreatment having no effect. CONCLUSIONS: Both IL-1 and IL-4 are involved in the response of AF cells derived from nondegenerative tissue to 1.0-Hz cyclic tensile strain. Interestingly, the altered response observed at 1.0-Hz in AF cells from degenerative tissue appears to be independent of either cytokine, suggesting an alternative mechanotransduction pathway in operation.


Subject(s)
Gene Expression Regulation/physiology , Interleukin-1/biosynthesis , Interleukin-4/biosynthesis , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Mechanotransduction, Cellular/physiology , Adult , Cells, Cultured , Gene Expression , Humans , Immunohistochemistry , Middle Aged , Real-Time Polymerase Chain Reaction , Stress, Mechanical
3.
Arthritis Rheum ; 62(11): 3385-94, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20617521

ABSTRACT

OBJECTIVE: Mechanical loads are important for homeostasis of the intervertebral disc (IVD) cell matrix, with physiologic and nonphysiologic loads leading to matrix anabolism and catabolism, respectively. Previous investigations into the effects of load on disc cells have predominantly used animal models, with the limited number of human studies focusing primarily on nucleus pulposus cells. The aim of this study was to examine the effect of cyclic tensile strain (CTS) on human anulus fibrosus (AF) cells to ascertain whether the response was frequency-dependent and to compare AF cells derived from nondegenerated and degenerated tissue samples. METHODS: AF cells were isolated from nondegenerated and degenerated human IVDs, expanded in monolayer, and cyclically strained for 20 minutes, applying 10% strain at a frequency of 1.0 Hz or 0.33 Hz with the use of a Flexcell strain device. Total RNA was extracted from the cells at baseline (control) and at 1, 3, and 24 hours following application of CTS. Real-time quantitative polymerase chain reaction was used to analyze gene expression of matrix proteins (aggrecan, type I collagen, and type II collagen) and enzymes (matrix metalloproteinases [MMPs] 3, 9, 13, and ADAMTS-4). RESULTS: The expression of catabolic genes (MMP-3 and ADAMTS-4) in AF cells derived from nondegenerated tissue decreased in response to 1.0 Hz of CTS, whereas changing the frequency to 0.33 Hz resulted in a shift toward matrix catabolism. Application of 1.0 Hz of CTS reduced anabolic gene expression (aggrecan and type I collagen) in AF cells derived from degenerated tissue, with 0.33 Hz of CTS resulting in increased catabolic gene expression. CONCLUSION: The response of human AF cells to CTS is frequency-dependent and is altered by degeneration.


Subject(s)
Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc/physiopathology , Aggrecans/genetics , Aggrecans/metabolism , Cell Survival , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Gene Expression , Humans , Intervertebral Disc/cytology , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/metabolism , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stress, Mechanical
4.
Matrix Biol ; 29(4): 254-60, 2010 May.
Article in English | MEDLINE | ID: mdl-20144712

ABSTRACT

Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm-microm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae.


Subject(s)
Cartilage/ultrastructure , Extracellular Matrix/ultrastructure , Microscopy, Atomic Force/methods , Microscopy/methods , Cartilage/metabolism , Diagnostic Imaging/methods , Extracellular Matrix/metabolism , Histocytological Preparation Techniques/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...